论文标题

随机时间范围内线性二次跟踪的统计一致的逆最佳控制

Statistically Consistent Inverse Optimal Control for Linear-Quadratic Tracking with Random Time Horizon

论文作者

Zhang, Han, Ringh, Axel, Jiang, Weihan, Li, Shaoyuan, Hu, Xiaoming

论文摘要

逆最佳控制(IOC)的目标是基于观察到的最佳轨迹识别基础目标函数。它为建模专家的行为提供了一个强大的框架,并通过数据驱动的方式设计目标函数,以便将诱导的最佳控制适用于上下文环境。在本文中,我们设计了一种与随机时间范围的线性二次跟踪问题的IOC算法,并证明了算法的统计一致性。更具体地说,所提出的估计器是解决凸优化问题的解决方案,这意味着估计值不遭受局部最小值的影响。这使得在实践中可以真正实现验证的统计一致性。在识别人类跟踪运动的目标函数的设置中,还对算法以及现实世界实验的数据进行了验证。统计一致性在综合数据集上说明了,实际数据的实验结果表明,我们可以基于估计目标函数对人类跟踪运动的良好预测。它表明该理论和模型在实际实践中具有良好的表现。此外,由于确定的目标功能描述了个人习惯和偏好,因此确定的模型可以用作个性化康复机器人控制器设计中的控制目标。

The goal of Inverse Optimal Control (IOC) is to identify the underlying objective function based on observed optimal trajectories. It provides a powerful framework to model expert's behavior, and a data-driven way to design an objective function so that the induced optimal control is adapted to a contextual environment. In this paper, we design an IOC algorithm for linear-quadratic tracking problems with random time horizon, and prove the statistical consistency of the algorithm. More specifically, the proposed estimator is the solution to a convex optimization problem, which means that the estimator does not suffer from local minima. This enables the proven statistical consistency to actually be achieved in practice. The algorithm is also verified on simulated data as well as data from a real world experiment, both in the setting of identifying the objective function of human tracking locomotion. The statistical consistency is illustrated on the synthetic data set, and the experimental results on the real data shows that we can get a good prediction on human tracking locomotion based on estimating the objective function. It shows that the theory and the model have a good performance in real practice. Moreover, the identified model can be used as a control target in personalized rehabilitation robot controller design, since the identified objective function describes personal habit and preferences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源