论文标题

关于人口异质性在紧急交流中的作用

On the role of population heterogeneity in emergent communication

论文作者

Rita, Mathieu, Strub, Florian, Grill, Jean-Bastien, Pietquin, Olivier, Dupoux, Emmanuel

论文摘要

人口通常被视为语言出现和进化的结构组成部分:人口越大,语言结构越多。尽管这种观察在社会语言文献中是广泛的,但在具有神经药物的计算机模拟中并未始终如一地再现它。因此,我们旨在阐明这一明显的矛盾。我们通过在说话者列表刘易斯游戏中改变代理人的人口大小来探索新兴的语言属性。在重现实验差后,我们挑战了代理群落是均匀的模拟假设。我们首先研究说话者 - 上的不对称性如何改变语言结构以检查两个潜在的多样性因素:训练速度和网络容量。我们发现,新兴的语言属性仅因说话者和听众之间的学习速度的相对差异而改变,而不是通过其绝对价值来改变。从那时起,我们利用这一观察结果来控制人口异质性,而无需引入混杂因素。我们最终表明,引入这种训练速度异质性自然会解决最初的矛盾:较大的模拟社区开始开发更稳定和结构化的语言。

Populations have often been perceived as a structuring component for language to emerge and evolve: the larger the population, the more structured the language. While this observation is widespread in the sociolinguistic literature, it has not been consistently reproduced in computer simulations with neural agents. In this paper, we thus aim to clarify this apparent contradiction. We explore emergent language properties by varying agent population size in the speaker-listener Lewis Game. After reproducing the experimental difference, we challenge the simulation assumption that the agent community is homogeneous. We first investigate how speaker-listener asymmetry alters language structure to examine two potential diversity factors: training speed and network capacity. We find out that emergent language properties are only altered by the relative difference of learning speeds between speaker and listener, and not by their absolute values. From then, we leverage this observation to control population heterogeneity without introducing confounding factors. We finally show that introducing such training speed heterogeneities naturally sort out the initial contradiction: larger simulated communities start developing more stable and structured languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源