论文标题

Euler Top和一维力学超对称性的自由度

Euler top and freedom in supersymmetrization of one-dimensional mechanics

论文作者

Khastyan, Erik, Krivonos, Sergey, Nersessian, Armen

论文摘要

最近,A.Galajinsky提出了Euler Top的N = 1个超对称延伸,并就其性质进行了一些有趣的观察结果[ARXIV:2111.06083 [HEP-TH]。在本文中,我们将Euler Top的配方用作复杂的投影平面上的系统,扮演相空间的作用,即作为一维机械系统。 然后,我们建议具有阳性哈密顿量的通用一维系统的超对称方案,该方案通过N = 2K超对称性汉密尔顿人的先验性n/2个任意实际函数参数。

Recently A.Galajinsky has suggested the N=1 supersymmetric extension of Euler top and made a few interesting observations on its properties [arXiv:2111.06083 [hep-th]]. In this paper we use the formulation of the Euler top as a system on complex projective plane, playing the role of phase space, i.e. as a one-dimensional mechanical system. Then we suggest the supersymmetrization scheme of the generic one-dimensional systems with positive Hamiltonian which yields a priori integrable family of N=2k supersymmetric Hamiltonians parameterized by N/2 arbitrary real functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源