论文标题

palatini $ f \ left(\ Mathcal r,t \ right)的连接条件

Junction conditions of Palatini $f\left(\mathcal R,T\right)$ gravity

论文作者

Rosa, João Luís, Rubiera-Garcia, Diego

论文摘要

我们解决了Palatini $ f(\ Mathcal {r},t)的连接条件,其中$ f $是独立连接的曲率标量$ \ MATHCAL {r} $的任意功能,以及对物质领域的压力型量量的跟踪$ t $ t $。我们在几种几何和物质数量的允许的不连续性上找到了这样的条件,其中一些情况偏离了公制,然后通过一些新的$ t $依赖性术语来扩展其palatini $ f(\ Mathcal {r})$版本。此外,我们还确定了一些$ f(\ Mathcal {r},t)$ lagrangians的一些“特殊情况”,因此可以丢弃其中一些情况,从而使$ \ Mathcal {r} $ {r} $ and $ t $的进一步不连续,并且与其他组合相反,它们与其他组合相反,与其他理论相反。动量通量和双重引力层。我们讨论了这些结条件如何以及归因于这些理论的应力能量张量的不保存如何诱导特定应用形状的非平凡变化,例如可穿越的薄壳蠕虫孔。

We work out the junction conditions for the Palatini $f(\mathcal{R},T)$ extension of General Relativity, where $f$ is an arbitrary function of the curvature scalar $\mathcal{R}$ of an independent connection, and of the trace $T$ of the stress-energy tensor of the matter fields. We find such conditions on the allowed discontinuities of several geometrical and matter quantities, some of which depart from their metric counterparts, and in turn extend their Palatini $f(\mathcal{R})$ versions via some new $T$-dependent terms. Moreover, we also identify some "exceptional cases" of $f(\mathcal{R},T)$ Lagrangians such that some of these conditions can be discarded, thus allowing for further discontinuities in $\mathcal{R}$ and $T$ and, in contrast with other theories of gravity, they are shown to not give rise to extra components in the matter sector e.g. momentum fluxes and double gravitational layers. We discuss how these junction conditions, together with the non-conservation of the stress-energy tensor ascribed to these theories, may induce non-trivial changes in the shape of specific applications such as traversable thin-shell wormholes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源