论文标题

通过线性代数$ 2 $ - 启动器

$2$-Spinors via Linear Algebra

论文作者

Plymen, Roger

论文摘要

我们提供了一个简化的帐户,其中包括$ 2 $ spinors,直至dirac方程,而不是线性代数的资源。我们证明,狄拉克捆绑包与关联的捆绑包$ \ mathrm {sl} _2(\ Mathbb {c})\ Times _ {\ Mathrm {su} _2 _2} _2} s $和$ \ MATHRM {SL} _2(\ Mathbb {C \ Mathbb {C})) \ times _ {\ mathrm {su} _2} \ bar {s} $。 DIRAC方程的解决方案确定了一对共轭$ 2 $ spinor字段,上面是大量壳$ x_m $。

We give a streamlined account of $2$-spinors, up to and including the Dirac equation, using little more than the resources of linear algebra. We prove that the Dirac bundle is isomorphic to the associated bundles $\mathrm{SL}_2(\mathbb{C}) \times_{\mathrm{SU}_2} S$ and $\mathrm{SL}_2(\mathbb{C}) \times_{\mathrm{SU}_2} \bar{S}$. A solution of the Dirac equation determines a pair of conjugate $2$-spinor fields over the mass shell $X_m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源