论文标题
使用星系簇中的气体质量分数来限制静液压质量偏置的质量和红移演化
Constraining the mass and redshift evolution of the hydrostatic mass bias using the gas mass fraction in galaxy clusters
论文作者
论文摘要
星系簇中的气体质量分数是用于宇宙学研究中的方便探测器,因为它可以帮助对宇宙学参数的集合得出约束。然而,它受到星系簇内部的男性物理学的各种影响,这可能会偏向获得的宇宙学约束。在重型物理学的不同方面,在本文中,我们着重于静水平衡假设的影响。我们分析了静水质量偏置$ b $,从而限制了该数量的可能的质量和红移演变及其对宇宙学约束的影响。为此,我们考虑了{\ it planck} -esz样品的群集观测,并使用X射线对应物观测来评估气体质量分数。我们显示了偏见和宇宙学参数的红移依赖性之间的变性。特别是,当在$ω_m$上假设{\ it planck}之前,我们发现偏见的红移依赖性的$3.8σ$证据。另一方面,假设恒定的质量偏见会导致$ω_m> 0.849 $的极高值。但是,我们表明我们的结果完全取决于我们考虑的群集样本。尤其是,我们发现样品中最低的质量降射和最高的质量降射簇的质量和红移趋势是不兼容的。然而,在所有分析中,我们都会发现偏差振幅的值,与$ b \ sim 0.8 $一致,这是从流体动力学模拟和局部测量中预期的,但仍然与$ b \ sim 0.6 $相关的张力来自宇宙微波背景初级Anisotropies与clister nissotropies与clister nork clistustr nork cluster norge Counters cosmic microhave beaction 0.6 $。
The gas mass fraction in galaxy clusters is a convenient probe to use in cosmological studies, as it can help derive constraints on a collection of cosmological parameters. It is however subject to various effects from the baryonic physics inside galaxy clusters, which may bias the obtained cosmological constraints. Among different aspects of the baryonic physics, in this paper we focus on the impact of the hydrostatic equilibrium assumption. We analyse the hydrostatic mass bias $B$, constraining a possible mass and redshift evolution of this quantity and its impact on the cosmological constraints. To that end we consider cluster observations of the {\it Planck}-ESZ sample and evaluate the gas mass fraction using X-ray counterpart observations. We show a degeneracy between the redshift dependence of the bias and cosmological parameters. In particular we find a $3.8 σ$ evidence for a redshift dependence of the bias when assuming a {\it Planck} prior on $Ω_m$. On the other hand, assuming a constant mass bias would lead to the extreme large value of $Ω_m > 0.849$. We however show that our results are entirely dependent on the cluster sample we consider. In particular, the mass and redshift trends that we find for the lowest mass-redshift and highest mass-redshift clusters of our sample are not compatible. Nevertheless, in all the analyses we find a value for the amplitude of the bias that is consistent with $B \sim 0.8$, as expected from hydrodynamical simulations and local measurements, but still in tension with the low value of $B \sim 0.6$ derived from the combination of cosmic microwave background primary anisotropies with cluster number counts.