论文标题

对XAI的5G和超越安全性的调查:技术方面,挑战和研究方向

A Survey on XAI for 5G and Beyond Security: Technical Aspects, Challenges and Research Directions

论文作者

Senevirathna, Thulitha, La, Vinh Hoa, Marchal, Samuel, Siniarski, Bartlomiej, Liyanage, Madhusanka, Wang, Shen

论文摘要

随着5G商业化的出现,设想为下一代5G(B5G)无线电访问技术的下一代设想,需要更可靠,更快和智能的电信系统。人工智能(AI)和机器学习(ML)在服务层应用程序中非常受欢迎,并且已被提议作为5G和网络以外的许多方面的基本推动力,从物联网设备和边缘计算到基于云的基础架构。但是,与模型的问责制和可信度相比,现有的基于5G ML的安全调查倾向于强调AI/ML模型性能和准确性。相比之下,本文探讨了可解释的AI(XAI)方法的潜力,该方法将允许5G及以后的利益相关者检查用于保护下一代网络的智能黑盒系统。在5G及以后的安全域中使用XAI的目的是允许基于ML的安全系统的决策过程是透明的,并且对5G及其他利益相关者进行了理解,从而使系统对自动化行动负责。在即将到来的B5G时代的各个方面,包括Oran,零接触网络管理和端到端切片等B5G技术,这项调查强调了XAI在他们中最终享受的XAI作用。此外,我们从涉及XAI的当前执行的项目中介绍了最近的努力和未来研究指示的课程。

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems is envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are immensely popular in service layer applications and have been proposed as essential enablers in many aspects of 5G and beyond networks, from IoT devices and edge computing to cloud-based infrastructures. However, existing 5G ML-based security surveys tend to emphasize AI/ML model performance and accuracy more than the models' accountability and trustworthiness. In contrast, this paper explores the potential of Explainable AI (XAI) methods, which would allow stakeholders in 5G and beyond to inspect intelligent black-box systems used to secure next-generation networks. The goal of using XAI in the security domain of 5G and beyond is to allow the decision-making processes of ML-based security systems to be transparent and comprehensible to 5G and beyond stakeholders, making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as ORAN, zero-touch network management, and end-to-end slicing, this survey emphasizes the role of XAI in them that the general users would ultimately enjoy. Furthermore, we presented the lessons from recent efforts and future research directions on top of the currently conducted projects involving XAI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源