论文标题
CATRANS:少量分段的上下文和亲和力变压器
CATrans: Context and Affinity Transformer for Few-Shot Segmentation
论文作者
论文摘要
几乎没有射击分割(FSS)旨在分割新的类别,并给出稀缺的带注释的支持图像。 FSS的症结在于如何汇总支持图像和查询图像之间的密集相关性,以进行查询分割,同时对外观和上下文中的较大变化有牢固的变化。为此,以前的基于变压器的方法探讨了在上下文相似性上的全局共识,也可以在支持 - 查询对之间的亲和力图上探索。在这项工作中,我们通过拟议中的小说上下文和层次结构中提出的新颖上下文和亲和力变压器(CATRANS)有效地整合了上下文和亲和力信息。具体而言,关系引导的上下文变压器(RCT)传播上下文信息,从支持到查询图像以更有信息的支持功能为条件。基于这样的观察,即支持和查询对之间的巨大特征区别为上下文知识传递带来了障碍,关系引导的亲和力变压器(大鼠)将注意力感知的亲和力作为FSS的辅助信息,其中自我亲和力负责更可靠的交叉。我们进行实验以证明所提出的模型的有效性,表现优于最先进的方法。
Few-shot segmentation (FSS) aims to segment novel categories given scarce annotated support images. The crux of FSS is how to aggregate dense correlations between support and query images for query segmentation while being robust to the large variations in appearance and context. To this end, previous Transformer-based methods explore global consensus either on context similarity or affinity map between support-query pairs. In this work, we effectively integrate the context and affinity information via the proposed novel Context and Affinity Transformer (CATrans) in a hierarchical architecture. Specifically, the Relation-guided Context Transformer (RCT) propagates context information from support to query images conditioned on more informative support features. Based on the observation that a huge feature distinction between support and query pairs brings barriers for context knowledge transfer, the Relation-guided Affinity Transformer (RAT) measures attention-aware affinity as auxiliary information for FSS, in which the self-affinity is responsible for more reliable cross-affinity. We conduct experiments to demonstrate the effectiveness of the proposed model, outperforming the state-of-the-art methods.