论文标题

正规化的盒子模拟游戏和动态减少双方匹配

Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching

论文作者

Jambulapati, Arun, Jin, Yujia, Sidford, Aaron, Tian, Kevin

论文摘要

Box-Simplex游戏是双线性最小目标的家族,封装了图形结构的问题,例如最大流量[SHE17],Optimal Transport [JST19]和两部分匹配[AJJ+22]。我们为这些游戏的正则变体开发了有效的近线性时间,高临界求解器。除了此类求解器在计算机器学习中的突出工具中,此类求解器的直接应用之外,我们还表明,这些求解器可用于获得改进的运行时间,以维持在动态的双位图中与适应性对手进行动态减小的双位图中的(分数)$ε$ -Approximate最大匹配。我们提供了一个通用框架,将这个动态匹配的问题降低到解决正则化的图形结构优化问题以高精度。通过我们的还原框架,我们的正则化盒子 - 简单游戏求解器意味着一种新的算法,用于整个时间$ \ tilde {o}(m \cdotε^{ - 3})$,从带有$ m $ edges和$ n $ nodes的初始图表中。我们进一步展示了如何利用流量优化的最新进展[CKL + 22]将运行时提高到$ M^{1 + O(1)} \CDOTε^{ - 2} $,从而证明了基于还原方法的多功能性。这些结果改善了$​​ \ tilde {o}(m \cdotε^{ - 4})$ [BGS20]的先前最佳运行时,并说明了使用正规化优化问题求解器设计动态算法的实用性。

Box-simplex games are a family of bilinear minimax objectives which encapsulate graph-structured problems such as maximum flow [She17], optimal transport [JST19], and bipartite matching [AJJ+22]. We develop efficient near-linear time, high-accuracy solvers for regularized variants of these games. Beyond the immediate applications of such solvers for computing Sinkhorn distances, a prominent tool in machine learning, we show that these solvers can be used to obtain improved running times for maintaining a (fractional) $ε$-approximate maximum matching in a dynamic decremental bipartite graph against an adaptive adversary. We give a generic framework which reduces this dynamic matching problem to solving regularized graph-structured optimization problems to high accuracy. Through our reduction framework, our regularized box-simplex game solver implies a new algorithm for dynamic decremental bipartite matching in total time $\tilde{O}(m \cdot ε^{-3})$, from an initial graph with $m$ edges and $n$ nodes. We further show how to use recent advances in flow optimization [CKL+22] to improve our runtime to $m^{1 + o(1)} \cdot ε^{-2}$, thereby demonstrating the versatility of our reduction-based approach. These results improve upon the previous best runtime of $\tilde{O}(m \cdot ε^{-4})$ [BGS20] and illustrate the utility of using regularized optimization problem solvers for designing dynamic algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源