论文标题
用重组嵌入贴片提高对抗性示例的可转移性
Improving the Transferability of Adversarial Examples with Restructure Embedded Patches
论文作者
论文摘要
视觉变压器(VIT)在各种计算机视觉任务中表现出了令人印象深刻的性能。但是,VIT生成的对抗性示例是将具有不同结构的其他网络转移到其他网络方面的挑战。最近的攻击方法没有考虑VITS架构和自我发项机制的特异性,这会导致通过VITS生成的对抗样本的可传递性差。我们通过重组输入的嵌入式斑块来攻击VIT中独特的自我注意事项机制。重组的嵌入式贴片使自我发项的机制能够获得更多样化的贴片连接,并帮助VITS保持对物体的关注区域。因此,我们提出了一种针对VIT中独特的自我发项机制的攻击方法,称为自我发项贴片重组(SAPR)。我们的方法易于实施,但有效,并且适用于任何基于自我注意的网络和基于梯度可传递性的攻击方法。我们评估具有不同结构的黑框模型上的攻击传递性。结果表明,我们的方法在具有更高可传递性和较高图像质量的白色框Vit上生成了对抗性示例。我们的研究推动了对VIT的黑盒转移攻击的开发,并证明了使用白色框VIT攻击其他黑盒模型的可行性。
Vision transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. However, the adversarial examples generated by ViTs are challenging to transfer to other networks with different structures. Recent attack methods do not consider the specificity of ViTs architecture and self-attention mechanism, which leads to poor transferability of the generated adversarial samples by ViTs. We attack the unique self-attention mechanism in ViTs by restructuring the embedded patches of the input. The restructured embedded patches enable the self-attention mechanism to obtain more diverse patches connections and help ViTs keep regions of interest on the object. Therefore, we propose an attack method against the unique self-attention mechanism in ViTs, called Self-Attention Patches Restructure (SAPR). Our method is simple to implement yet efficient and applicable to any self-attention based network and gradient transferability-based attack methods. We evaluate attack transferability on black-box models with different structures. The result show that our method generates adversarial examples on white-box ViTs with higher transferability and higher image quality. Our research advances the development of black-box transfer attacks on ViTs and demonstrates the feasibility of using white-box ViTs to attack other black-box models.