论文标题

过境频率设置问题与需求不确定性

Transit Frequency Setting Problem with Demand Uncertainty

论文作者

Guo, Xiaotong, Mo, Baichuan, Koutsopoulos, Haris N., Wang, Shenhao, Zhao, Jinhua

论文摘要

公共交通系统是城市化时代城市流动系统的支柱。运输时间表的设计对于公共交通的有效和可持续运营至关重要。但是,以前的研究通常采用固定的需求模式,而忽略了需求中的不确定性,这可能会产生容易受到需求变化的过境计划。为了解决公共交通系统固有的需求不确定性问题,本文同时采用随机编程(SP)和健壮的优化(RO)技术来生成针对需求不确定性的强大过境计划。首先提出了单个运输线设置下传输频率设置问题(TFSP)的名义(非舒适)优化模型。然后将模型扩展到基于SP和基于RO的公式,以结合需求不确定性。现实世界中运输问题的大规模起源 - 原始矩阵(OD)矩阵使优化问题难以解决。为了有效地生成健壮的运输计划,提出了一种过渡量(TD)方法来降低问题的维度。我们证明,TD之后问题的最佳目标函数接近原始问题的目标(即,差异是从上方界定的)。提出的模型通过芝加哥运输管理局(CTA)的现实世界传输线和数据进行了测试。与CTA实施的当前过境计划相比,不考虑需求不确定性的标称TFSP模型会减少乘客的等待时间,同时增加车辆内旅行时间。在纳入需求不确定性之后,随机和鲁棒的TFSP模型均同时减少了乘客的等待时间和车内旅行时间。与随机的TFSP模型相比,稳健的TFSP模型可以生产具有更好的车载行进时间和乘客的等待时间较差的运输计划。

Public transit systems are the backbone of urban mobility systems in the era of urbanization. The design of transit schedules is important for the efficient and sustainable operation of public transit. However, previous studies usually assume fixed demand patterns and ignore uncertainties in demand, which may generate transit schedules that are vulnerable to demand variations. To address demand uncertainty issues inherent in public transit systems, this paper adopts both stochastic programming (SP) and robust optimization (RO) techniques to generate robust transit schedules against demand uncertainty. A nominal (non-robust) optimization model for the transit frequency setting problem (TFSP) under a single transit line setting is first proposed. The model is then extended to SP-based and RO-based formulations to incorporate demand uncertainty. The large-scale origin-destination (OD) matrices for real-world transit problems make the optimization problems hard to solve. To efficiently generate robust transit schedules, a Transit Downsizing (TD) approach is proposed to reduce the dimensionality of the problem. We prove that the optimal objective function of the problem after TD is close to that of the original problem (i.e., the difference is bounded from above). The proposed models are tested with real-world transit lines and data from the Chicago Transit Authority (CTA). Compared to the current transit schedule implemented by CTA, the nominal TFSP model without considering demand uncertainty reduces passengers' wait times while increasing in-vehicle travel times. After incorporating demand uncertainty, both stochastic and robust TFSP models reduce passengers' wait times and in-vehicle travel times simultaneously. The robust TFSP model produces transit schedules with better in-vehicle travel times and worse wait times for passengers compared to the stochastic TFSP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源