论文标题

基于VAE的异常检测系统的新应用

Novel Applications for VAE-based Anomaly Detection Systems

论文作者

Bergamin, Luca, Carraro, Tommaso, Polato, Mirko, Aiolli, Fabio

论文摘要

深度学习技术的最新增长推动了创新,并增强了科学研究。他们的成就使深度生成建模(DGM)的新研究方向是一种日益流行的方法,可以从给定的数据集开始创建新颖而看不见的数据。由于该技术显示出有希望的应用,也出现了许多道德问题。例如,他们的滥用可以实现虚假信息运动和强大的网络钓鱼尝试。研究还表明,不同的偏见会影响深度学习模型,从而导致社会问题,例如虚假陈述。在这项工作中,我们制定了一种新颖的设置来处理类似的问题,表明重新利用的异常检测系统有效地生成了新的数据,避免生成指定的不需要数据。我们建议使用变分的自动编码器(VAE),提出了变异自动编码二进制分类器(V-ABC):一种新型模型,可重新利用和扩展自动编码二进制分类器(ABC)异常检测器。我们调查了现有方法的局限性,并探索了许多工具以以可解释的方式展示模型的内部运作方式。该提案具有生成应用的巨大潜力:依靠用户生成的数据的模型可以自动滤除不需要的内容,例如进攻性语言,淫秽图像和误导性信息。

The recent rise in deep learning technologies fueled innovation and boosted scientific research. Their achievements enabled new research directions for deep generative modeling (DGM), an increasingly popular approach that can create novel and unseen data, starting from a given data set. As the technology shows promising applications, many ethical issues also arise. For example, their misuse can enable disinformation campaigns and powerful phishing attempts. Research also indicates different biases affect deep learning models, leading to social issues such as misrepresentation. In this work, we formulate a novel setting to deal with similar problems, showing that a repurposed anomaly detection system effectively generates novel data, avoiding generating specified unwanted data. We propose Variational Auto-encoding Binary Classifiers (V-ABC): a novel model that repurposes and extends the Auto-encoding Binary Classifier (ABC) anomaly detector, using the Variational Auto-encoder (VAE). We survey the limitations of existing approaches and explore many tools to show the model's inner workings in an interpretable way. This proposal has excellent potential for generative applications: models that rely on user-generated data could automatically filter out unwanted content, such as offensive language, obscene images, and misleading information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源