论文标题

颜色量化的新旋转

A New Spin on Color Quantization

论文作者

Lakhal, Samy, Darmon, Alexandre, Benzaquen, Michael

论文摘要

我们使用基于最大熵的方法来解决图像颜色量化的问题。专注于像素映射,我们认为在系统中添加热噪声比从简单的能量最小化获得的视觉印象更好。为了量化这一观察结果,我们引入了粗粒量的误差,并寻求最佳温度,从而最大程度地减少了可观察到的新观测。通过比较具有不同结构特性的图像,我们表明最佳温度是在不同尺度下复杂性的良好代理。指出综合误差是可观察到的关键,我们使用蒙特卡洛算法将其直接最小化,以生成一系列新的量化图像。根据有限尺寸样本的信息采用原始方法,我们能够确定最佳的卷积参数,从而导致最佳视觉效果。最后,我们测试方法的鲁棒性,以防止图像类型,调色板和卷积内核的变化。

We address the problem of image color quantization using a Maximum Entropy based approach. Focusing on pixel mapping we argue that adding thermal noise to the system yields better visual impressions than that obtained from a simple energy minimization. To quantify this observation, we introduce the coarse-grained quantization error, and seek the optimal temperature which minimizes this new observable. By comparing images with different structural properties, we show that the optimal temperature is a good proxy for complexity at different scales. Noting that the convoluted error is a key observable, we directly minimize it using a Monte Carlo algorithm to generate a new series of quantized images. Adopting an original approach based on the informativity of finite size samples, we are able to determine the optimal convolution parameter leading to the best visuals. Finally, we test the robustness of our method against changes in image type, color palette and convolution kernel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源