论文标题

圆环上的Hirota-Satsuma系统的平滑和全球吸引子

Smoothing and Global Attractors for the Hirota-Satsuma System on the Torus

论文作者

Başakoğlu, Engin, Gürel, T. Burak

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the Hirota-Satsuma system, a coupled KdV-type system, with periodic boundary conditions. The first part of the paper concerns with the smoothing estimates for the system. More precisely, it is shown that, for initial data in a Sobolev space, the difference of the nonlinear and linear evolutions lies in a smoother space. The smoothing gain we obtain depends very much on the arithmetic nature of the coupling parameter $a$ which determines the structure of the resonant sets in the estimates. In the second part, we address the forced and damped Hirota-Satsuma system and obtain counterpart smoothing estimates. As a consequence of these estimates, we prove the existence and smoothness of a global attractor in the energy space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源