论文标题
Brillouin Klein瓶中的人造仪表田
Brillouin Klein Bottle From Artificial Gauge Fields
论文作者
论文摘要
布里渊区是晶体动量空间的单位。从拓扑上讲,这是一个圆环,区分布里群圆环上的一组波函数是否可以平稳变形到另一个导致物质拓扑状态的分类。在这里,我们表明,在$ \ mathbb {z} _2 $ gauge字段,即用阶段$ \ pm 1 $跳跃振幅,动量空间的基本领域可以假设一个klein瓶的拓扑。布里渊区理论的这种急剧变化是由于仪表场强制执行的投射对称代数。值得注意的是,与$ \ Mathbb {Z} $相比之下,布里群klein瓶的不可定位对应于$ \ mathbb {z} _2 $不变的拓扑分类。结果是一种新型的klein瓶绝缘子,该绝缘子具有两个边缘的拓扑模式,该边缘与非本地扭曲有关,与所有以前的拓扑绝缘子完全不同。我们的预测可以很容易地在各种人造晶体中实现,并且该发现为探索尺度现场修饰的物理基本结构探索拓扑物理的新方向。
A Brillouin zone is the unit for the momentum space of a crystal. It is topologically a torus, and distinguishing whether a set of wave functions over the Brillouin torus can be smoothly deformed to another leads to the classification of various topological states of matter. Here, we show that under $\mathbb{Z}_2$ gauge fields, i.e., hopping amplitudes with phases $\pm 1$, the fundamental domain of momentum space can assume the topology of a Klein bottle. This drastic change of the Brillouin zone theory is due to the projective symmetry algebra enforced by the gauge field. Remarkably, the non-orientability of the Brillouin Klein bottle corresponds to the topological classification by a $\mathbb{Z}_2$ invariant, in contrast to the Chern number valued in $\mathbb{Z}$ for the usual Brillouin torus. The result is a novel Klein-bottle insulator featuring topological modes at two edges related by a nonlocal twist, radically distinct from all previous topological insulators. Our prediction can be readily achieved in various artificial crystals, and the discovery opens a new direction to explore topological physics by gauge-field-modified fundamental structures of physics.