论文标题

通过多任务学习,用于跨工程机队的知识转移的层次结构贝叶斯建模

Hierarchical Bayesian Modelling for Knowledge Transfer Across Engineering Fleets via Multitask Learning

论文作者

Bull, L. A., Di Francesco, D., Dhada, M., Steinert, O., Lindgren, T., Parlikad, A. K., Duncan, A. B., Girolami, M.

论文摘要

在建立工程基础设施的预测模型时,提出了人群级分析来解决数据稀疏性。利用可解释的层次贝叶斯方法和操作车队数据,域专业知识是自然编码(并适当共享)在不同的子组之间,代表(i)使用型,(ii)组件或(iii)操作条件。具体而言,利用领域专业知识来通过假设(和先前的分布)来限制该模型,从而使该方法可以自动共享相似资产之间的信息,从而改善了对风电场中卡车机队和权力预测的生存分析。在每个资产管理示例中,在合并的推理中学习了一组相关的功能,以学习人口模型。当子型在层次结构的不同级别共享相关信息时,参数估计得到改善。反过来,数据不完整的组会自动从数据丰富的组中借用统计强度。统计相关性可以通过贝叶斯转移学习进行知识转移,并且可以检查相关性,以告知哪些资产共享有关哪些效果(即参数)的信息。两种案例研究都证明了对实际基础设施监测的广泛适用性,因为该方法自然是在不同原位示例的可解释的车队模型之间进行的。

A population-level analysis is proposed to address data sparsity when building predictive models for engineering infrastructure. Utilising an interpretable hierarchical Bayesian approach and operational fleet data, domain expertise is naturally encoded (and appropriately shared) between different sub-groups, representing (i) use-type, (ii) component, or (iii) operating condition. Specifically, domain expertise is exploited to constrain the model via assumptions (and prior distributions) allowing the methodology to automatically share information between similar assets, improving the survival analysis of a truck fleet and power prediction in a wind farm. In each asset management example, a set of correlated functions is learnt over the fleet, in a combined inference, to learn a population model. Parameter estimation is improved when sub-fleets share correlated information at different levels of the hierarchy. In turn, groups with incomplete data automatically borrow statistical strength from those that are data-rich. The statistical correlations enable knowledge transfer via Bayesian transfer learning, and the correlations can be inspected to inform which assets share information for which effect (i.e. parameter). Both case studies demonstrate the wide applicability to practical infrastructure monitoring, since the approach is naturally adapted between interpretable fleet models of different in situ examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源