论文标题
电解质/2D材料的杂片面
Hetero-interface of electrolyte/2D materials
论文作者
论文摘要
电化学门控已被证明是调整二维(2D)材料的物理特性的强大工具,从而导致许多引人入胜的量子现象。但是,据报道的液体电解质(例如离子液体和离子 - 凝胶)覆盖了2D材料的顶表面,在杂项面上引入应变,并对湿度的敏感性,这很大程度上限制了对电解质和2D材料之间异质界面的进一步探索,及其在2D材料之间及其广泛的电子应用应用程序和宽敞应用。在此,通过引入锂离子固态电解质,在杂距接口处的电动双层(EDL)的特征以及其对过渡金属粉核化(TMDS)光学特性的影响已通过Kelvin探针力量显微镜显微镜(KPFM)和(时间分辨)光致光稠密测量值揭示。 TMD的工作函数可以通过电化学门控能够强烈定制,WSE2分别为0.7EV和MOS2的0.3 eV。此外,从具有不同厚度的TMD的栅极依赖性表面电势中,已定量揭示了跨EDL的电势下降。此外,从室温下的栅极依赖性PL发射中,单层WS2仅在施加的整个栅极电压范围内显示出中性激子发射,这也显示出激子 - 外激体歼灭。我们的结果表明,锂离子底物是探索2D材料物理学和电解质/2D材料的异质接口的一种有希望的替代方法,可以轻松整合扫描探针和光学技术。
Electrochemical gating has been demonstrated as a powerful tool to tune the physical properties of two-dimensional (2D) materials, leading to lots of fascinating quantum phenomena. However, the reported liquid-nature electrolytes (e.g, ionic liquid and ion-gel) cover the top surface of 2D materials, introduce the strain at the hetero-interface, and present sensitivity to humidity, which strongly limits the further exploration of the hetero-interface between electrolyte and 2D materials, and their wide applications for electronics and optoelectronics. Herein, by introducing a lithium-ion solid-state electrolyte, the character of the electric double layer (EDL) at hetero-interface and its effect on the optical property of transition metal chalcogenides (TMDs) have been revealed by Kelvin probe force microscopy (KPFM) and (time-resolved) photoluminescence measurements. The work function of TMDs can be strongly tailored by electrochemical gating, up to 0.7eV for WSe2 and 0.3 eV for MoS2, respectively. Besides, from the gate-dependent surface potential of TMDs with different thicknesses, the potential drop across the EDL has been quantitatively revealed. Furthermore, from the gate-dependent PL emission at room temperature, monolayer WS2 exhibits only neutral exciton emission in the whole range of gate voltage applied, which also exhibits exciton-exciton annihilation. Our results demonstrate that lithium-ion substrate is a promising alternative to explore the physics of 2D materials and the hetero-interface of electrolyte/2D materials by easily integrating both scanning probe and optical techniques.