论文标题

关于全息的penrose不平等

On Penrose inequality in holography

论文作者

Xiao, Zi-Qing, Yang, Run-Qiu

论文摘要

penrose不平等的最新全息扣除仅假定为无效的能量条件,而在通常的几何形状证明中需要弱或显性能量条件。本文朝着填补这两种方法之间的空白迈出了一步。对于平面/球体在对称上渐近的Schwarzschild抗DE保姆(ADS)黑洞,我们通过假设无效的能量条件给出了Penrose不平等的纯几何证明。我们还指出,两种幼稚的彭罗斯不平等概括是不正确的,并提出了两个新的候选人。当时空是渐近的广告而不是Schwarzschild-Ads时​​,总质量是根据全息重新归如此的定义,取决于量化方案。在这种情况下,全息论的论点意味着penrose不平等仍然有效,但是本文使用具体示例表明,Penrose不等式是否存在是否取决于我们采用的量化方案。

The recent holographic deduction of Penrose inequality only assumes null energy condition while the weak or dominant energy condition is required in usual geometric proof. This paper makes a step toward filling up gap between these two approaches. For planar/spherically symmetrically asymptotically Schwarzschild anti-de Sitter (AdS) black holes, we give a purely geometric proof for Penrose inequality by assuming the null energy condition. We also point out that two naive generalizations of charged Penrose inequality are not generally true and propose two new candidates. When the spacetime is asymptotically AdS but not Schwarzschild-AdS, the total mass is defined according to holographic renormalization and depends on scheme of quantization. In this case, the holographic argument implies that the Penrose inequality should still be valid but this paper use concrete example to show that whether the Penrose inequality holds or not will depend on what kind of quantization scheme we employ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源