论文标题

第一原理的逆分子设计:针对光电应用调整有机发色团光谱

Inverse molecular design from first principles: tailoring organic chromophore spectra for optoelectronic applications

论文作者

Green, James David, Fuemmeler, Eric Gabriel, Hele, Timothy J. H.

论文摘要

在创建下一代有机发光二极管(OLEDS)和光伏的情况下,具有定制的光电特性(例如特定的频率和强度)的分子发现分子是一个主要的挑战。这提出了一个问题:我们如何从这些特性中预测潜在的化学结构?试图解决这个反设计问题的方法包括虚拟筛选,主动机器学习和遗传算法。但是,这些方法依赖于分子数据库或许多电子结构计算,并且如果(i)(i)是否可以轻松改善父分子的光启发性特性,以及(ii)(ii)父母分子上的变形操作可以改善这些特性。从这个角度来看,我们从第一原则中解决了这两个挑战。首先,我们将Thomas-Reiche-Kuhn Sum规则适应有机发色团,并展示这表明如何更轻松地改善分子的吸收和发射。然后,我们通过结合电子结构理论和强度借用扰动理论来展示我们可以预测所提出的变形操作是否将实现所需的光谱改变,从而得出广泛适用的设计规则。我们继续提供这种方法的概念证明,以优化可见的齿轮吸收和自由基OLED的发射。我们认为,这种方法可以通过偏向于变形操作而有利于可能成功的形态操作来整合到遗传算法中,从而导致更快的分子发现和更绿色的化学反应。

The discovery of molecules with tailored optoelectronic properties such as specific frequency and intensity of absorption or emission is a major challenge in creating next-generation organic light-emitting diodes (OLEDs) and photovoltaics. This raises the question: how can we predict a potential chemical structure from these properties? Approaches that attempt to tackle this inverse design problem include virtual screening, active machine learning and genetic algorithms. However, these approaches rely on a molecular database or many electronic structure calculations, and significant computational savings could be achieved if there was prior knowledge of (i) whether the optoelectronic properties of a parent molecule could easily be improved and (ii) what morphing operations on a parent molecule could improve these properties. In this perspective we address both of these challenges from first principles. We firstly adapt the Thomas-Reiche-Kuhn sum rule to organic chromophores and show how this indicates how easily the absorption and emission of a molecule can be improved. We then show how by combining electronic structure theory and intensity borrowing perturbation theory we can predict whether or not the proposed morphing operations will achieve the desired spectral alteration, and thereby derive widely-applicable design rules. We go on to provide proof-of-concept illustrations of this approach to optimizing the visible absorption of acenes and the emission of radical OLEDs. We believe this approach can be integrated into genetic algorithms by biasing morphing operations in favour of those which are likely to be successful, leading to faster molecular discovery and greener chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源