论文标题
嘈杂的量子内核机器
Noisy Quantum Kernel Machines
论文作者
论文摘要
在嘈杂的中间量子时代,一个重要的目标是可实现的算法的概念,这些算法利用了量子系统的丰富动态和基础希尔伯特空间的高维度来执行任务,同时从噪声防噪声物理系统中进行预示。一类新兴的量子学习机器是基于量子内核的范式。在这里,我们研究耗散和破坏性如何影响其性能。我们通过在内核理论框架内研究这些模型的表达性和概括能力来解决这个问题。我们介绍和研究有效的内核等级,这是一个量化独立特征的数量噪声量子内核能够从输入数据中提取的功能的数字。此外,我们在模型的概括误差上得出了涉及编码状态的平均纯度的上限。因此,我们表明,熔融和耗散可以看作是量子内核机的隐式正则化。作为一个说明性的示例,我们根据驱动式量子旋转的链条报告机器的确切有限尺寸模拟以执行分类任务,其中输入数据被编码到驱动场中,并且固定了量子物理系统。我们确定嘈杂的内核机器的性能如何用节点(链位点)的数量(链位点)缩放,并检查不完美测量的效果。
In the noisy intermediate-scale quantum era, an important goal is the conception of implementable algorithms that exploit the rich dynamics of quantum systems and the high dimensionality of the underlying Hilbert spaces to perform tasks while prescinding from noise-proof physical systems. An emerging class of quantum learning machines is that based on the paradigm of quantum kernels. Here, we study how dissipation and decoherence affect their performance. We address this issue by investigating the expressivity and the generalization capacity of these models within the framework of kernel theory. We introduce and study the effective kernel rank, a figure of merit that quantifies the number of independent features a noisy quantum kernel is able to extract from input data. Moreover, we derive an upper bound on the generalization error of the model that involves the average purity of the encoded states. Thereby we show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines. As an illustrative example, we report exact finite-size simulations of machines based on chains of driven-dissipative quantum spins to perform a classification task, where the input data are encoded into the driving fields and the quantum physical system is fixed. We determine how the performance of noisy kernel machines scales with the number of nodes (chain sites) as a function of decoherence and examine the effect of imperfect measurements.