论文标题

与耦合离子的直接边界电子$ g $因子差异测量

Direct Bound-Electron $g$ factor Difference Measurement with Coupled Ions

论文作者

Sailer, Tim, Debierre, Vincent, Harman, Zoltán, Heiße, Fabian, König, Charlotte, Morgner, Jonathan, Tu, Bingsheng, Volotka, Andrey V., Keitel, Christoph H., Blaum, Klaus, Sturm, Sven

论文摘要

灯光和强度相互作用的量子电动力学(QED)描述是物理学中最基本的理论之一,已被证明与实验结果非常吻合。具体而言,在笔架陷阱中,高电荷离子(HCI)的电子磁矩(或$ g $系数)的测量可以为QED提供严格的探测,并在最强的电磁场中测试标准模型。在研究同位素的差异时,由于电子构型相同,也可以解决和测试的复杂效应,因此不必考虑许多常见的QED贡献。但是,从实验上讲,这很快就会受到限制,尤其是由于离子质量的精度或可实现的磁场稳定性。在这里,我们报告了一种新颖的测量技术,该技术通过将两个HCI共同捕获了一个限制,从而克服了这两种局限性,并直接测量其$ G $因子的差异。磁场波动的产生相关性导致较高的精度。我们使用锁定在公共磁控轨道上的离子,仅被几百微米隔开,以提取相干的旋转进液频率差。我们已经测量了$^{20} $ ne $^{9+} $和$^{22} $ ne $^{9+} $ to 0.56 pert-per-pert-trillion($ 5.6 \ cd cdot 10^{ - 13} $ y的$ imement y in y IS的$ ist $ evely的$ g y iS的$ g cd { - 13} $比他们的$更重要的是,他们的$ y多于他们的$ ist of tos的$ 5.6 \ cd { - 13} $,与最先进的技术相比。这是第一次解决QED对核后坐力的贡献,并准确验证了相应的理论。此外,与理论的一致性允许为Higgs-Portal-type的深色 - 深色相互作用设定第五力的约束。

The quantum electrodynamic (QED) description of light-and-matter interaction is one of the most fundamental theories of physics and has been shown to be in excellent agreement with experimental results. Specifically, measurements of the electronic magnetic moment (or $g$ factor) of highly charged ions (HCI) in Penning traps can provide a stringent probe for QED, testing the Standard model in the strongest electromagnetic fields. When studying the difference of isotopes, even the intricate effects stemming from the nucleus can be resolved and tested as, due to the identical electron configuration, many common QED contributions do not have to be considered. Experimentally however, this becomes quickly limited, particularly by the precision of the ion masses or the achievable magnetic field stability. Here we report on a novel measurement technique that overcomes both of these limitations by co-trapping two HCIs in a Penning trap and measuring the difference of their $g$ factors directly. The resulting correlation of magnetic field fluctuations leads to drastically higher precision. We use a dual Ramsey-type measurement scheme with the ions locked on a common magnetron orbit, separated by only a few hundred micrometres, to extract the coherent spin precession frequency difference. We have measured the isotopic shift of the bound electron $g$ factor of the neon isotopes of $^{20}$Ne$^{9+}$ and $^{22}$Ne$^{9+}$ to 0.56 parts-per-trillion ($5.6 \cdot 10^{-13}$) precision relative to their $g$ factors, which is an improvement of more than two orders of magnitude compared to state-of-the-art techniques. This resolves the QED contribution to the nuclear recoil for the very first time and accurately validates the corresponding theory. Furthermore, the agreement with theory allows setting constraints for a fifth-force, resulting from Higgs-portal-type dark-matter interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源