论文标题
$ \ mathfrak {osp}(1 | 2)$ sonformal块的$ \ mathfrak的构造
Wilson lines construction of $\mathfrak{osp}(1|2)$ conformal blocks
论文作者
论文摘要
我们使用Chern-Simons公式$ 3D $ GRAVITY在ADS/CFT对应的背景下研究n = 1个超宪法理论。在此限制中,所谓光原始超级场的子类的共形维度仍然有限,并由$ \ m athfrak {osp}(1 | 2)(1 | 2)$ n = 1 super-virasoro代数的subergebra。我们描述了$ \ mathfrak {osp}(1 | 2)$保形块的构造,说明Chern-Simons的Wilson Lines $ 3D $ GRAVITY。我们考虑在球体上的两个和三分块的示例,以及光超级磁场的单点圆环块,这些场属于$ \ mathfrak {osp}(1 | 2)$的有限维表示。我们研究了主要$ \ mathfrak {osp}(1 | 2)$ doublets的高层和上部组件的相关函数,并证明相关的保形块是通过Chern-Simons理论中的Wilson Line构造获得的。
We study N=1 superconformal theory in the context of AdS/CFT correspondence in the large central charge limit using Chern-Simons formulation of $3d$ gravity. In this limit conformal dimensions of a subclass of so-called light primary superfields remain finite and are governed by $\mathfrak{osp}(1|2)$ subalgebra of N=1 super-Virasoro algebra. We describe the construction of $\mathfrak{osp}(1|2)$ conformal blocks in terms of Wilson lines of the Chern-Simons $3d$ gravity. We consider examples of two and three-point blocks on the sphere and one-point torus blocks of light superprimary fields, which belong to finite-dimensional representations of $\mathfrak{osp}(1|2)$. We study the correlation function for lower and upper components of the primary $\mathfrak{osp}(1|2)$ doublets and show that the associated conformal blocks are obtained via Wilson line construction in Chern-Simons theory.