论文标题
使用边界控制的运动计划和强大的热量跟踪
Motion Planning and Robust Tracking for the Heat Equation using Boundary Control
论文作者
论文摘要
在本文中解决了稳健的输出跟踪,以提供Neumann边界条件和反协议的边界输入和输出的热量方程。使用众所周知的平面度和Lyapunov方法来解决所需的参考跟踪。通过解决名义工厂的运动计划问题获得参考轮廓。为了在存在干扰和不确定性的情况下稳健闭环系统,然后使用PI反馈加上它,以及一个不连续的组件,负责拒绝使用\ textit {先验{先验}已知幅度界限的匹配干扰。这样的控制定律仅需要系统的信息在与控制输入所在的边界相同的边界上。最终的动态控制器在全球范围内呈指数级稳定误差动力学,同时还削弱了Lipschitz-In-imphitz-In-time外部干扰和参数不确定性的影响。对于在不确定工厂进行运动计划的情况下,获得了指数对国家的稳定性,从而保留了跟踪误差规范的界限。提出的控制器依赖于不连续的术语,该术语通过积分器,从而最大程度地减少了植物动力学中的颤动效果。在存在外部干扰和参数不确定性的情况下,在不同种类的参考轨迹下,在模拟中说明了闭环系统的性能。
Robust output tracking is addressed in this paper for a heat equation with Neumann boundary conditions and anti-collocated boundary input and output. The desired reference tracking is solved using the well-known flatness and Lyapunov approaches. The reference profile is obtained by solving the motion planning problem for the nominal plant. To robustify the closed-loop system in the presence of the disturbances and uncertainties, it is then augmented with PI feedback plus a discontinuous component responsible for rejecting matched disturbances with \textit{a priori} known magnitude bounds. Such control law only requires the information of the system at the same boundary as the control input is located. The resulting dynamic controller globally exponentially stabilizes the error dynamics while also attenuating the influence of Lipschitz-in-time external disturbances and parameter uncertainties. For the case when the motion planning is performed over the uncertain plant, an exponential Input-to-State Stability is obtained, preserving the boundedness of the tracking error norm. The proposed controller relies on a discontinuous term that however passes through an integrator, thereby minimizing the chattering effect in the plant dynamics. The performance of the closed-loop system, thus designed, is illustrated in simulations under different kinds of reference trajectories in the presence of external disturbances and parameter uncertainties.