论文标题

理想在交换环中的主要分解,重点是krull环

Prime Factorization of ideals in commutative rings, with a focus on Krull rings

论文作者

Chang, Gyu Whan, Oh, Jun Seok

论文摘要

令$ r $为具有身份的交换戒指。结构定理说,$ r $是pir(resp。,UFR,ZPI-RING,$π$ -ROIND),并且仅当$ r $是PIDS(分别,UFDS,Dedekind域,$π$ -Domains)和特殊主环的有限直接产品。所有这四种类型的积分域都是Krull域,因此是由结构定理的动机,我们研究了一个环中理想的主要分解,这是Krull域和特殊主环的有限直接产物。这样的戒指将被称为一般的克鲁尔环。众所周知,Krull域的特征是Star Operations $ v $或$ t $,如下所示:当且仅当每个非零适当的$ r $的主体理想都可以写成有限$ v $ - 或$ t $ - $ t $ - $ t $ - $ t $ - prime理想的产品时。但是,对于一般的Krull环而言,情况并非如此。在本文中,我们在$ r $上引入了一个新的星星操作$ u $,因此,$ r $是一般的krull戒指,并且只有在每个适当的主要理想$ r $的理想才能写成有限的$ u $ $ u $ - 主要理想的产品时。我们还研究了一般的Krull环的几种环理论特性,包括Kaplansky型定理,Mori-Nagata定理,Nagata环和Noetherian属性。

Let $R$ be a commutative ring with identity. The structure theorem says that $R$ is a PIR (resp., UFR, general ZPI-ring, $π$-ring) if and only if $R$ is a finite direct product of PIDs (resp., UFDs, Dedekind domains, $π$-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations $v$ or $t$ as follows: An integral domain $R$ is a Krull domain if and only if every nonzero proper principal ideal of $R$ can be written as a finite $v$- or $t$-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation $u$ on $R$, so that $R$ is a general Krull ring if and only if every proper principal ideal of $R$ can be written as a finite $u$-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源