论文标题

通过立体声和SDO数据集改进了AI生成的太阳能磁力图及其释放

Improved AI-generated Solar Farside Magnetograms by STEREO and SDO Data Sets and Their Release

论文作者

Jeong, Hyun-Jin, Moon, Yong-Jae, Park, Eunsu, Lee, Harim, Baek, Ji-Hye

论文摘要

在这里,我们使用太阳陆地关系天文台(立体声)和太阳能动力学天文台(SDO)的数据集(SDO)大大改善了人工智能(AI)生成的太阳片图。我们修改了以前的深度学习模型和输入数据集的配置,以生成比以前更真实的磁图。首先,我们的模型(称为pix2pixcc)使用更新的目标函数,其中包括真实数据和生成数据之间的相关系数(CC)。其次,我们构建了模型的输入数据集:太阳范围立体声极端紫外线(EUV)观测值以及最近的EUV观测和磁图的最接近的前侧SDO数据对。我们希望前沿数据对提供磁场极性分布的历史信息。我们证明,与几个指标相比,模型产生的磁场分布与实际情况更一致。用于完整磁盘,活跃区域的平均像素到像素CC分别为8 x 8嵌套的真实和AI生成的磁力图之间的平均位置分别为0.88、0.91和0.70。 AI生成的磁图的总未签名磁通量和净磁通量与测试数据集的真实磁力图一致。有趣的是,我们的Farside磁力图可产生一致的极性磁场强度和磁场极性,而在太阳周期24和25的附近前侧磁场极性。现在,我们可以使用模型以及前边的太阳能磁力图来监测活动区域的时间演化。现在,我们的AI生成的太阳能磁力图(AISFMS)现已在SDO的韩国数据中心(KDC)公开使用。

Here we greatly improve Artificial Intelligence (AI)-generated solar farside magnetograms using data sets of Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO). We modify our previous deep learning model and configuration of input data sets to generate more realistic magnetograms than before. First, our model, which is called Pix2PixCC, uses updated objective functions which include correlation coefficients (CCs) between the real and generated data. Second, we construct input data sets of our model: solar farside STEREO extreme ultraviolet (EUV) observations together with nearest frontside SDO data pairs of EUV observations and magnetograms. We expect that the frontside data pairs provide the historic information of magnetic field polarity distributions. We demonstrate that magnetic field distributions generated by our model are more consistent with the real ones than before in view of several metrics. The averaged pixel-to-pixel CC for full disk, active regions, and quiet regions between real and AI-generated magnetograms with 8 by 8 binning are 0.88, 0.91, and 0.70, respectively. Total unsigned magnetic flux and net magnetic flux of the AI-generated magnetograms are consistent with those of real ones for test data sets. It is interesting to note that our farside magnetograms produce consistent polar field strengths and magnetic field polarities with those of nearby frontside ones for solar cycle 24 and 25. Now we can monitor the temporal evolution of active regions using solar farside magnetograms by the model together with the frontside ones. Our AI-generated Solar Farside Magnetograms (AISFMs) are now publicly available at Korean Data Center (KDC) for SDO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源