论文标题
评论感知的图形对比度学习框架推荐
A Review-aware Graph Contrastive Learning Framework for Recommendation
论文作者
论文摘要
大多数现代推荐系统可以通过两个组件来预测用户的偏好:用户和项目嵌入学习,然后是用户 - 项目交互建模。通过利用辅助审核信息伴随着用户评分,许多现有的基于审核的建议模型丰富了用户/项目嵌入学习能力,具有历史评论或更好地建模的用户项目互动,并在可用的用户项目目标审查的帮助下。尽管已经取得了重大进展,但我们认为目前的基于审查建议的解决方案遭受了两个缺点。首先,由于基于审核的建议可以自然形成为用户 - 项目二分图,并具有相应的用户项目评论中的边缘功能,因此如何更好地利用这种独特的图形结构来推荐?其次,虽然大多数当前模型都受到用户行为有限的影响,但我们是否可以在评论感知图中利用独特的自我监管信号来指导两个建议组件?为此,在本文中,我们提出了一个新颖的评论图形对比学习(RGCL)框架,以基于审查的建议。具体而言,我们首先构建了一个评论感知的用户项目图,并具有评论中的功能增强边缘,其中每个边缘功能均由用户项目额定值和相应的评论语义组成。此图具有功能增强边缘的图可以帮助专注地学习用户和项目表示学习的每个邻居节点的重量。之后,我们设计了两个其他对比学习任务(即节点歧视和边缘歧视),以在建议过程中为两个组件提供自我监督的信号。最后,与最先进的基线相比,五个基准数据集的广泛实验证明了我们提出的RGCL的优势。
Most modern recommender systems predict users preferences with two components: user and item embedding learning, followed by the user-item interaction modeling. By utilizing the auxiliary review information accompanied with user ratings, many of the existing review-based recommendation models enriched user/item embedding learning ability with historical reviews or better modeled user-item interactions with the help of available user-item target reviews. Though significant progress has been made, we argue that current solutions for review-based recommendation suffer from two drawbacks. First, as review-based recommendation can be naturally formed as a user-item bipartite graph with edge features from corresponding user-item reviews, how to better exploit this unique graph structure for recommendation? Second, while most current models suffer from limited user behaviors, can we exploit the unique self-supervised signals in the review-aware graph to guide two recommendation components better? To this end, in this paper, we propose a novel Review-aware Graph Contrastive Learning (RGCL) framework for review-based recommendation. Specifically, we first construct a review-aware user-item graph with feature-enhanced edges from reviews, where each edge feature is composed of both the user-item rating and the corresponding review semantics. This graph with feature-enhanced edges can help attentively learn each neighbor node weight for user and item representation learning. After that, we design two additional contrastive learning tasks (i.e., Node Discrimination and Edge Discrimination) to provide self-supervised signals for the two components in recommendation process. Finally, extensive experiments over five benchmark datasets demonstrate the superiority of our proposed RGCL compared to the state-of-the-art baselines.