论文标题

虚弱的自以为是的弗拉索夫 - 弗朗克方程的指数熵耗散

Exponential Entropy dissipation for weakly self-consistent Vlasov-Fokker-Planck equations

论文作者

Bayraktar, Erhan, Feng, Qi, Li, Wuchen

论文摘要

我们研究了弱自以为是的vlasov-fokker-Planck方程的长期动力学行为。我们在均值场核函数上介绍了Hessian矩阵条件,该函数的特征是解决方案在$ l^1 $距离中的指数收敛。基质条件源自所选Lyapunov功能的耗散,即辅助Fisher信息功能。我们在示例中验证了建议的矩阵条件。

We study long-time dynamical behaviors of weakly self-consistent Vlasov-Fokker-Planck equations. We introduce Hessian matrix conditions on mean-field kernel functions, which characterizes the exponential convergence of solutions in $L^1$ distances. The matrix condition is derived from the dissipation of a selected Lyapunov functional, namely auxiliary Fisher information functional. We verify proposed matrix conditions in examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源