论文标题

在端到端学习的图像压缩中估计调整大小参数

Estimating the Resize Parameter in End-to-end Learned Image Compression

论文作者

Chen, Li-Heng, Bampis, Christos G., Li, Zhi, Krasula, Lukáš, Bovik, Alan C.

论文摘要

我们描述了一个无搜索的调整大小框架,该框架可以进一步改善最近学习的图像压缩模型的利率差异权。我们的方法很简单:组成一对夹心神经压缩模型的一对可区分的下采样/升级层。为了确定不同输入的调整因素,我们利用另一个与压缩模型共同训练的神经网络,最终目标是最大程度地降低速率延伸目标。我们的结果表明,可以通过使用辅助网络和可区分的图像翘曲在编码期间快速确定“压缩友好”的倒数采样表示形式。通过对现有深层图像压缩模型进行广泛的实验测试,我们显示了我们的新调整参数估计框架可以为领先的知觉质量引擎提供约10%的Bjøntegaard-Delta速率(BD率)提高约10%。我们还进行了一项主观质量研究,其结果表明我们的新方法产生了有利的压缩图像。为了促进该方向可再现的研究,本文中使用的实施是在以下网址在线免费获得:https://github.com/treammm/resizecompression。

We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models. Our approach is simple: compose a pair of differentiable downsampling/upsampling layers that sandwich a neural compression model. To determine resize factors for different inputs, we utilize another neural network jointly trained with the compression model, with the end goal of minimizing the rate-distortion objective. Our results suggest that "compression friendly" downsampled representations can be quickly determined during encoding by using an auxiliary network and differentiable image warping. By conducting extensive experimental tests on existing deep image compression models, we show results that our new resizing parameter estimation framework can provide Bjøntegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines. We also carried out a subjective quality study, the results of which show that our new approach yields favorable compressed images. To facilitate reproducible research in this direction, the implementation used in this paper is being made freely available online at: https://github.com/treammm/ResizeCompression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源