论文标题
迈向贝叶斯力学的几何形状和分析
Towards a Geometry and Analysis for Bayesian Mechanics
论文作者
论文摘要
在本文中,用公理术语制定了一个简单的贝叶斯力学案例。我们认为,任何具有限制性动力学的动力学系统看起来都必须对这些约束进行推断,并且在非分离系统中,此类约束意味着嵌入系统的外部环境变量。使用统计力学中经典动力学系统理论的各个方面,我们表明,这种推论等同于香农熵功能上的梯度上升,在状态空间上的局部千古概率指标下恢复了近似贝叶斯的推断。我们还使用了一些来自动力学系统理论的几何概念$ \ unicode {x2014} $,即,约束构成了量规的自由度$ \ unicode {x2014} $来详细说明如何将保持自组织的愿望读取为在系统上的仪表作用。这样,给出了许多独立兴趣的结果。总体而言,我们为纯粹由随机动力学系统描述的人提供了相关但替代性的形式主义,并迈出了对形式数学语言中自组织物理学物理学的全面陈述。
In this paper, a simple case of Bayesian mechanics under the free energy principle is formulated in axiomatic terms. We argue that any dynamical system with constraints on its dynamics necessarily looks as though it is performing inference against these constraints, and that in a non-isolated system, such constraints imply external environmental variables embedding the system. Using aspects of classical dynamical systems theory in statistical mechanics, we show that this inference is equivalent to a gradient ascent on the Shannon entropy functional, recovering an approximate Bayesian inference under a locally ergodic probability measure on the state space. We also use some geometric notions from dynamical systems theory$\unicode{x2014}$namely, that the constraints constitute a gauge degree of freedom$\unicode{x2014}$to elaborate on how the desire to stay self-organised can be read as a gauge force acting on the system. In doing so, a number of results of independent interest are given. Overall, we provide a related, but alternative, formalism to those driven purely by descriptions of random dynamical systems, and take a further step towards a comprehensive statement of the physics of self-organisation in formal mathematical language.