论文标题

仔细研究联合图像分类中的个性化

A Closer Look at Personalization in Federated Image Classification

论文作者

Jing, Changxing, Huang, Yan, Zhuang, Yihong, Sun, Liyan, Huang, Yue, Xiao, Zhenlong, Ding, Xinghao

论文摘要

开发联合学习(FL)是为了在分散数据中学习一个单一的全球模型,而在存在统计异质性的情况下,在实现特定于客户的个性化时很容易受到影响。但是,研究专注于学习强大的全球模型或个性化分类器,由于目标不一致而产生差异。本文表明,在全球模型的融合之后,可以通过引入表示形式学习来实现灵活的个性化。在本文中,我们首先分析并确定非IID数据会损害全球模型的表示。现有的FL方法遵循共同学习表示和分类器的方案,其中全局模型是基于分类的本地模型的平均值,这些模型始终受到非IID数据的异质性。作为解决方案,我们将表示形式学习与FL中的分类学习分开,并提出Repper,这是一个独立的两阶段个性化的FL框架。我们首先学习客户端特征表示模型,这些模型可用于非IID数据并将其汇总为全球通用表示模型。之后,我们根据前阶段获得的共同表示,通过为每个客户学习分类器负责人来实现个性化。值得注意的是,提议的reper的两阶段学习方案可以用于轻巧的边缘计算,涉及具有约束计算能力的设备。各种数据集(CIFAR-10/100,CINIC-10)的经验,并且异质数据设置表明,Repper在非iid ID数据方面均优于灵活性和个性化。

Federated Learning (FL) is developed to learn a single global model across the decentralized data, while is susceptible when realizing client-specific personalization in the presence of statistical heterogeneity. However, studies focus on learning a robust global model or personalized classifiers, which yield divergence due to inconsistent objectives. This paper shows that it is possible to achieve flexible personalization after the convergence of the global model by introducing representation learning. In this paper, we first analyze and determine that non-IID data harms representation learning of the global model. Existing FL methods adhere to the scheme of jointly learning representations and classifiers, where the global model is an average of classification-based local models that are consistently subject to heterogeneity from non-IID data. As a solution, we separate representation learning from classification learning in FL and propose RepPer, an independent two-stage personalized FL framework.We first learn the client-side feature representation models that are robust to non-IID data and aggregate them into a global common representation model. After that, we achieve personalization by learning a classifier head for each client, based on the common representation obtained at the former stage. Notably, the proposed two-stage learning scheme of RepPer can be potentially used for lightweight edge computing that involves devices with constrained computation power.Experiments on various datasets (CIFAR-10/100, CINIC-10) and heterogeneous data setup show that RepPer outperforms alternatives in flexibility and personalization on non-IID data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源