论文标题

使用卷积神经网络的系外行星制图

Exoplanet Cartography using Convolutional Neural Networks

论文作者

Meinke, K., Stam, D. M., Visser, P. M.

论文摘要

在近乎未来的望远镜中,专用望远镜在反射的光中观察到地球样系外行星,从而使它们的表征。由于距离很大,每个系外行星都将是一个像素,但是光谱通量中的时间变化可容纳有关行星表面和大气的信息。我们测试了卷积神经网络,以从模拟的单像素通量和极化观测值中检索行星的旋转轴,表面和云图。我们调查了行星在检索中反映兰伯特时代的假设,而它们的实际反射是双向的,并且在检索中包括极化。我们使用辐射转移算法模拟了沿着行星轨道的观测,其中包括植被,沙漠,海洋,海洋,水云和瑞利散射在400至800 nm的6个光谱带中,以各种光子噪声水平在6个光谱带中进行。覆盖模型行星的刻面的表面类型和云图案基于概率分布。在检索测试行星地图之前,我们的网络经过模拟观察的模拟观察。根据轨道倾斜度,神经网络可以以平均平方误差(MSE)为小至0.0097的旋转轴约束旋转轴。在双向反映行星上,在没有噪音的情况下正确检索了92%的海洋和85%的植被,沙漠和云层。有了逼真的噪音,仍然可以使用专用望远镜检索主要地图功能。除了面对面的轨道外,经过兰伯特反射行星训练的网络,当观察到双向反射行星,尤其是行星杆周围的亮度人工制品时,会产生重大检索错误。包括极化可以改善旋转轴的检索以及海洋和云面检索的准确性。

In the near-future, dedicated telescopes observe Earth-like exoplanets in reflected light, allowing their characterization. Because of the huge distances, every exoplanet will be a single pixel, but temporal variations in its spectral flux hold information about the planet's surface and atmosphere. We test convolutional neural networks for retrieving a planet's rotation axis, surface and cloud map from simulated single-pixel flux and polarization observations. We investigate the assumption that the planets reflect Lambertian in the retrieval while their actual reflection is bidirectional, and of including polarization in retrievals. We simulate observations along a planet's orbit using a radiative transfer algorithm that includes polarization and bidirectional reflection by vegetation, desert, oceans, water clouds, and Rayleigh scattering in 6 spectral bands from 400 to 800 nm, at various photon noise levels. The surface-types and cloud patterns of the facets covering a model planet are based on probability distributions. Our networks are trained with simulated observations of millions of planets before retrieving maps of test planets. The neural networks can constrain rotation axes with a mean squared error (MSE) as small as 0.0097, depending on the orbital inclination. On a bidirectionally reflecting planet, 92% of ocean and 85% of vegetation, desert, and cloud facets are correctly retrieved, in the absence of noise. With realistic noise, it should still be possible to retrieve the main map features with a dedicated telescope. Except for face-on orbits, a network trained with Lambertian reflecting planets, yields significant retrieval errors when given observations of bidirectionally reflecting planets, in particular, brightness artefacts around a planet's pole. Including polarization improves retrieving the rotation axis and the accuracy of the retrieval of ocean and cloud facets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源