论文标题

大量MIMO的深CSI压缩:自我信息模型驱动的神经网络

Deep CSI Compression for Massive MIMO: A Self-information Model-driven Neural Network

论文作者

Yin, Ziqing, Xu, Wei, Xie, Renjie, Zhang, Shaoqing, Ng, Derrick Wing Kwan, You, Xiaohu

论文摘要

为了完全利用大量多输入多输出(MMIMO)的优势,对于发射器而言,准确获取通道状态信息(CSI)至关重要。已经提出了基于深度学习(DL)的方法,用于CSI压缩和对发射器的反馈。尽管大多数基于DL的方法将CSI矩阵视为图像,但在神经网络设计中很少利用CSI图像的结构特征。因此,我们提出了一个自我信息模型,该模型从结构特征的角度动态测量了CSI图像中每个贴片中包含的信息量。然后,通过应用自我信息信息模型,我们为CSI压缩和反馈(即IDASNET)提出了一个模型和数据驱动的网络。 IDASNET包括设计自我信息删除和选择模块(IDA),该模块是信息性功能压缩(IFC)的编码器(IFC)的编码器,以及内容丰富的功能恢复(IFR)的解码器。特别是,IDA的模型驱动模块通过根据自我信息删除信息冗余来预压缩CSI图像。然后,IFC的编码器将功能压缩对预压缩的CSI映像进行了压缩,并生成了一个功能编码,该特征编码器包含两个组件,即代码字值和代码字值的位置索引。随后,IFR解码器将代码字值和位置索引分解以恢复CSI图像。实验结果验证了所提出的IDASNET在各种压缩比下明显优于现有的基于DL的网络,而与现有方法相比,它的网络参数数量减少了网络参数的数量。

In order to fully exploit the advantages of massive multiple-input multiple-output (mMIMO), it is critical for the transmitter to accurately acquire the channel state information (CSI). Deep learning (DL)-based methods have been proposed for CSI compression and feedback to the transmitter. Although most existing DL-based methods consider the CSI matrix as an image, structural features of the CSI image are rarely exploited in neural network design. As such, we propose a model of self-information that dynamically measures the amount of information contained in each patch of a CSI image from the perspective of structural features. Then, by applying the self-information model, we propose a model-and-data-driven network for CSI compression and feedback, namely IdasNet. The IdasNet includes the design of a module of self-information deletion and selection (IDAS), an encoder of informative feature compression (IFC), and a decoder of informative feature recovery (IFR). In particular, the model-driven module of IDAS pre-compresses the CSI image by removing informative redundancy in terms of the self-information. The encoder of IFC then conducts feature compression to the pre-compressed CSI image and generates a feature codeword which contains two components, i.e., codeword values and position indices of the codeword values. Subsequently, the IFR decoder decouples the codeword values as well as position indices to recover the CSI image. Experimental results verify that the proposed IdasNet noticeably outperforms existing DL-based networks under various compression ratios while it has the number of network parameters reduced by orders-of-magnitude compared with various existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源