论文标题

将视觉显着性方法和稀疏关键点注释结合在一起,以便在晚上探测车辆

Combining Visual Saliency Methods and Sparse Keypoint Annotations to Providently Detect Vehicles at Night

论文作者

Ewecker, Lukas, Ohnemus, Lars, Schwager, Robin, Roos, Stefan, Brühl, Tim, Saralajew, Sascha

论文摘要

在夜间对其他道路使用者的发现有可能提高道路安全性。为此,人类直观地使用视觉提示,例如其他道路使用者发出的光锥和光反射,以便能够在早期阶段对即将来临的交通做出反应。通过计算机视觉方法,可以通过根据车辆大灯引起的发射光反射来预测车辆的外观来模仿这种行为。由于当前的对象检测算法主要基于检测通过边界框注释的直接可见对象,因此在没有尖锐边界的情况下对光反射的检测和注释是具有挑战性的。因此,发表了广泛的开源数据集PVDN(晚上的公积车辆检测),其中包括夜间的交通情况,并通过关键点注释了光反射。在本文中,我们探讨了基于显着性方法的潜力,以基于PVDN数据集的视觉显着性和稀疏关键点注释来创建不同的对象表示。为此,我们通过考虑人类的稀疏关键点注释,将布尔地图显着性的一般思想扩展到了上下文感知的方法。我们表明,这种方法允许对不同对象表示形式进行自动推导,例如二进制图或边界框,以便可以在不同的注释变体上训练检测模型,并且可以从不同的角度来解决夜间彻底检测车辆的问题。因此,我们提供了进一步的强大工具和方法来研究在实际可见之前晚上检测车辆的问题。

Provident detection of other road users at night has the potential for increasing road safety. For this purpose, humans intuitively use visual cues, such as light cones and light reflections emitted by other road users to be able to react to oncoming traffic at an early stage. This behavior can be imitated by computer vision methods by predicting the appearance of vehicles based on emitted light reflections caused by the vehicle's headlights. Since current object detection algorithms are mainly based on detecting directly visible objects annotated via bounding boxes, the detection and annotation of light reflections without sharp boundaries is challenging. For this reason, the extensive open-source dataset PVDN (Provident Vehicle Detection at Night) was published, which includes traffic scenarios at night with light reflections annotated via keypoints. In this paper, we explore the potential of saliency-based approaches to create different object representations based on the visual saliency and sparse keypoint annotations of the PVDN dataset. For that, we extend the general idea of Boolean map saliency towards a context-aware approach by taking into consideration sparse keypoint annotations by humans. We show that this approach allows for an automated derivation of different object representations, such as binary maps or bounding boxes so that detection models can be trained on different annotation variants and the problem of providently detecting vehicles at night can be tackled from different perspectives. With that, we provide further powerful tools and methods to study the problem of detecting vehicles at night before they are actually visible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源