论文标题

宽或深:特定图像的计算成本杠杆水印的性能

Go Wide or Go Deep: Levering Watermarking Performance with Computational Cost for Specific Images

论文作者

Jia, Zhaoyang, Fang, Han, Ma, Zehua, Zhang, Weiming

论文摘要

数字水印已被广泛研究以保护知识产权。传统的水印方案通常在“更广泛”的规则中设计,该规则将一种一般嵌入机制应用于所有图像。但这将限制在鲁棒性不可识别的权衡中,在这种情况下,只有通过增加嵌入强度才能实现鲁棒性的改善,从而导致视觉质量衰减。但是,在此阶段出现了一个新的方案,许多企业希望对特定有价值的图像进行高水平的保护,这需要高度鲁棒性和高视觉质量。这种情况使水印方案应以“更深”的方式设计,从而使嵌入机制定制为特定图像。为了实现这一点,我们通过引入计算成本来打破鲁棒性不可识别的权衡,并提出一种新型的自动码头式图像指定的水印框架(ISMARK)。基于ISMARK,可以实现强大的鲁棒性和高视觉质量。详细说明,我们采用优化程序(OPT)来替换传统的嵌入机制。与现有的使用学习编码器嵌入水印的方案不同,OPT将封面图像视为可优化参数,以最大程度地减少解码器的提取误差,因此可以有效利用每个指定图像的特征以实现出色的性能。广泛的实验表明,与最先进的方法相比,较大的利润率优于最先进的方法,这将平均位误差率提高了4.64%(从4.86%到0.22%),而PSNR的平均误差率则以2.20dB(从32.50dB到34.70dB)。

Digital watermarking has been widely studied for the protection of intellectual property. Traditional watermarking schemes often design in a "wider" rule, which applies one general embedding mechanism to all images. But this will limit the scheme into a robustness-invisibility trade-off, where the improvements of robustness can only be achieved by the increase of embedding intensity thus causing the visual quality decay. However, a new scenario comes out at this stage that many businesses wish to give high level protection to specific valuable images, which requires high robustness and high visual quality at the same time. Such scenario makes the watermarking schemes should be designed in a "deeper" way which makes the embedding mechanism customized to specific images. To achieve so, we break the robustness-invisibility trade-off by introducing computation cost in, and propose a novel auto-decoder-like image-specified watermarking framework (ISMark). Based on ISMark, the strong robustness and high visual quality for specific images can be both achieved. In detail, we apply an optimization procedure (OPT) to replace the traditional embedding mechanism. Unlike existing schemes that embed watermarks using a learned encoder, OPT regards the cover image as the optimizable parameters to minimize the extraction error of the decoder, thus the features of each specified image can be effectively exploited to achieve superior performance. Extensive experiments indicate that ISMark outperforms the state-of-the-art methods by a large margin, which improves the average bit error rate by 4.64% (from 4.86% to 0.22%) and PSNR by 2.20dB (from 32.50dB to 34.70dB).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源