论文标题
自适应认知拟合:人工智能增强信息方面和表示的管理
Adaptive cognitive fit: Artificial intelligence augmented management of information facets and representations
论文作者
论文摘要
大数据技术和人工智能[AI]应用程序的爆炸性增长导致信息方面的普遍性增加,并迅速增长的信息表示形式。诸如模棱两可和真实性之类的信息方面可以主导并显着影响人类对信息的看法,从而影响人类绩效。在大数据和人工智能时代之前的认知拟合度的现有研究集中在使信息表示和任务对绩效的效果上,而无需对信息方面和随之而来的认知挑战进行充分考虑。因此,迫切需要了解这些主要信息方面与信息表示和任务的相互作用及其对人类绩效的影响。我们建议,对于这些复杂的信息环境,必须进行人工智能的技术来克服认知局限性。为此,我们提出并测试一种新颖的 *自适应认知拟合 * [ACF]框架,该框架解释了信息方面和AI-Enover信息表示对人类绩效的影响。我们利用信息处理理论和认知失调理论来推进ACF框架和一组命题。我们通过经济实验验证了ACF命题,该实验证明了信息方面的影响,以及一个机器学习模拟,以建立使用AI来改善人类绩效的生存能力。
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets and a rapidly growing array of information representations. Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information and consequently affect human performance. Extant research in cognitive fit, which preceded the big data and AI era, focused on the effects of aligning information representation and task on performance, without sufficient consideration to information facets and attendant cognitive challenges. Therefore, there is a compelling need to understand the interplay of these dominant information facets with information representations and tasks, and their influence on human performance. We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary for these complex information environments. To this end, we propose and test a novel *Adaptive Cognitive Fit* [ACF] framework that explains the influence of information facets and AI-augmented information representations on human performance. We draw on information processing theory and cognitive dissonance theory to advance the ACF framework and a set of propositions. We empirically validate the ACF propositions with an economic experiment that demonstrates the influence of information facets, and a machine learning simulation that establishes the viability of using AI to improve human performance.