论文标题

PointInst3D:按点进行3D段

PointInst3D: Segmenting 3D Instances by Points

论文作者

He, Tong, Yin, Wei, Shen, Chunhua, Hengel, Anton van den

论文摘要

尽管有启发式方法,贪婪的算法以及对数据统计变化的变化,但3D实例分割中的当前最新方法通常涉及聚类步骤。相比之下,我们提出了一种以每点预测方式起作用的完全横向跨度3D点云实例分割方法。为此,它避免了基于聚类的方法面临的挑战:在模型的不同任务之间引入依赖关系。我们发现其成功的关键是为每个采样点分配一个合适的目标。我们建议使用最佳的传输方法,根据动态匹配成本,将最佳的传输方法最佳地分配给采样点,而不是常用的静态或基于距离的分配策略。我们的方法在扫描仪和S3DIS基准测试方面取得了令人鼓舞的结果。所提出的方法删除了插件依赖性,因此代表了比其他竞争方法更简单,更灵活的3D实例分割框架,同时实现了提高的分割精度。

The current state-of-the-art methods in 3D instance segmentation typically involve a clustering step, despite the tendency towards heuristics, greedy algorithms, and a lack of robustness to the changes in data statistics. In contrast, we propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion. In doing so it avoids the challenges that clustering-based methods face: introducing dependencies among different tasks of the model. We find the key to its success is assigning a suitable target to each sampled point. Instead of the commonly used static or distance-based assignment strategies, we propose to use an Optimal Transport approach to optimally assign target masks to the sampled points according to the dynamic matching costs. Our approach achieves promising results on both ScanNet and S3DIS benchmarks. The proposed approach removes intertask dependencies and thus represents a simpler and more flexible 3D instance segmentation framework than other competing methods, while achieving improved segmentation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源