论文标题

学习对称性世界模型的对称嵌入

Learning Symmetric Embeddings for Equivariant World Models

论文作者

Park, Jung Yeon, Biza, Ondrej, Zhao, Linfeng, van de Meent, Jan Willem, Walters, Robin

论文摘要

合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型的适用性。我们提出学习对称嵌入网络(SENS),该网络(SENS)编码输入空间(例如,图像),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。该网络可以通过模棱两可的任务网络端到端训练,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模型过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线,这样做可以提高准确性和泛化。

Incorporating symmetries can lead to highly data-efficient and generalizable models by defining equivalence classes of data samples related by transformations. However, characterizing how transformations act on input data is often difficult, limiting the applicability of equivariant models. We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images), where we do not know the effect of transformations (e.g. rotations), to a feature space that transforms in a known manner under these operations. This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation. We validate this approach in the context of equivariant transition models with 3 distinct forms of symmetry. Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations. Moreover, doing so can yield improvements in accuracy and generalization relative to both fully-equivariant and non-equivariant baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源