论文标题
无均匀混乱中的无监督学习判别MIG探测器
Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter
论文作者
论文摘要
主成分分析(PCA)是一种常用的模式分析方法,该方法将高维数据映射到最大化数据差异的较低维空间中,从而导致数据可分离性的可分离性。受PCA原理的启发,开发了一种新型的学习判别矩阵信息几何(MIG)检测器,在无监督的情况下开发了,并应用于非均匀环境中的信号检测。 Hermitian阳性(HPD)矩阵可用于对样品数据进行建模,而混乱协方差矩阵则由一组二级HPD矩阵的几何平均值估算。我们定义了一个在高维歧管中将HPD矩阵映射到低维且更具歧视性的投影,以通过最大化数据差异来增加HPD矩阵的分离程度。学习映射可以作为Riemannian歧管中的两步微型最大优化问题进行配制,可以通过Riemannian梯度下降算法来解决。相对于不同的几何措施,即二次欧巴文指标,詹森 - 炸弹logdet Divergence和对称的kullback-leibler Divergence说明了三个歧视性MIG探测器。仿真结果表明,与常规探测器及其最新环境中的最新探测器相比,新型MIG探测器的性能改善可以实现。
Principal component analysis (PCA) is a commonly used pattern analysis method that maps high-dimensional data into a lower-dimensional space maximizing the data variance, that results in the promotion of separability of data. Inspired by the principle of PCA, a novel type of learning discriminative matrix information geometry (MIG) detectors in the unsupervised scenario are developed, and applied to signal detection in nonhomogeneous environments. Hermitian positive-definite (HPD) matrices can be used to model the sample data, while the clutter covariance matrix is estimated by the geometric mean of a set of secondary HPD matrices. We define a projection that maps the HPD matrices in a high-dimensional manifold to a low-dimensional and more discriminative one to increase the degree of separation of HPD matrices by maximizing the data variance. Learning a mapping can be formulated as a two-step mini-max optimization problem in Riemannian manifolds, which can be solved by the Riemannian gradient descent algorithm. Three discriminative MIG detectors are illustrated with respect to different geometric measures, i.e., the Log-Euclidean metric, the Jensen--Bregman LogDet divergence and the symmetrized Kullback--Leibler divergence. Simulation results show that performance improvements of the novel MIG detectors can be achieved compared with the conventional detectors and their state-of-the-art counterparts within nonhomogeneous environments.