论文标题
在巨大的时间渐进级,带有一般数据的klein-gordon类型方程
On The large Time Asymptotics of Klein-Gordon type equations with General Data-I
论文作者
论文摘要
我们研究了具有一般相互作用项的klein-gordon方程,该方程可能是线性或非线性,以及时空依赖性。初始数据是通用的,大且非义的。我们证明,全球解决方案是由自由波和弱点的部分渐近提供的。该证明基于以新的方式构造自由通道波运算符,以及最近的作品中的进一步工具\ cite {liu-sof1,liu-sof2,sw2020,sw2022}。这项工作将\ cite {liu-sof1,liu-sof2}的第一部分的结果概括为任意维度和非统治数据的结果。
We study the Klein-Gordon equation with general interaction term, which may be linear or nonlinear, and space-time dependent. The initial data is general, large and non-radial. We prove that global solutions are asymptotically given by a free wave and a weakly localized part. The proof is based on constructing in a new way the Free Channel Wave Operator, and further tools from the recent works \cite{Liu-Sof1,Liu-Sof2,SW2020,SW2022}. This work generalizes the results of the first part of \cite{Liu-Sof1,Liu-Sof2} on the Schrödinger equation to arbitrary dimension, and non-radial data.