论文标题
非线性Schrödinger-Newton系统的新型解决方案
New type of solutions for the nonlinear Schrödinger-Newton system
论文作者
论文摘要
非线性Schrödinger-Newton System \ begin {等式*} \ begin {case} Δu-v(| x |)u +ψu= 0,&〜x \ in \ mathbb {r}^3,\\Δψ + \ frac12 u^2 = 0 = 0,&〜x \ in \ m athbb {r}^3,\ end e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e n in line con e ny cout in line cou。带有牛顿力学重力法的量子力学。 WEI和YAN(CALC。VAR。部分微分方程37(2010),423--439)证明,Schrödinger方程在$ \ Mathbb {r}^n $中具有无限的许多积极解决方案,并且这些解决方案在$(y_ _ {1},y _ _ {2} 2} 2} $ insection中,它们具有多边形对称性。 Duan等。在(Arxiv:2006.16125v1)扩展了WEI和YAN获得的结果,这些解决方案在$(y_ {1},y_ {2})$平面中具有多边形对称性,甚至在$ y_ {2} $中,在$ y_ {2} $中,还有一个在selutions.hu等人表达的参数。在对潜在函数V的适当假设下,Hu等人。在(ARXIV:2106.04288V1)中,为Schrödinger-Newton系统构建了许多非主体阳性解决方案,这些阳性解决方案在$(y_ {1},y_ {2})中具有多边形对称性,它们甚至是$ y_ __ {2} $ y_ {2} $ y_ y_ y_ y_ y_ y_ y_ y_ y_ _ _} $ y_ __ p}。假设$ v(r)$具有以下字符\ begin {qore*} v(r)= v_ {1}+\ frac {b} {r^q}+o \ big(\ frac {\ frac {1} {r^{q+σ}}}}}}}}} \ big) $ \ frac12 \ leq q <1 $和$ b,v_ {1},σ$是一些正常数,$ v(y)\ geq v_1> 0 $,我们构建了无限的许多非范围的正面解决方案,这些解决方案在$(y__ {1},y__ {2} $ y__ {2} $ y____________________________2中Schrödinger-Newton系统由Lyapunov-Schmidt减少方法。我们扩展了Duan等人获得的结果。在(Arxiv:2006.16125v1)中,到非线性Schrödinger-Newton系统。
The nonlinear Schrödinger-Newton system \begin{equation*} \begin{cases} Δu- V(|x|)u + Ψu=0, &~x\in\mathbb{R}^3,\\ ΔΨ+\frac12 u^2=0, &~x\in\mathbb{R}^3, \end{cases} \end{equation*} is a nonlinear system obtained by coupling the linear Schrödinger equation of quantum mechanics with the gravitation law of Newtonian mechanics. Wei and Yan in (Calc. Var. Partial Differential Equations 37 (2010),423--439) proved that the Schrödinger equation has infinitely many positive solutions in $\mathbb{R}^N$ and these solutions have polygonal symmetry in the $(y_{1}, y_{2})$ plane and they are radially symmetric in the other variables. Duan et al. in (arXiv:2006.16125v1) extended the results got by Wei and Yan and these solutions have polygonal symmetry in the $(y_{1}, y_{2})$ plane and they are even in $y_{2}$with one more more parameter in the expression of the solutions.Hu et al. Under the appropriate assumption on the potential function V, Hu et al. in (arXiv: 2106.04288v1) constructed infinitely many non-radial positive solutions for the Schrödinger-Newton system and these positive solutions have polygonal symmetry in the $(y_{1}, y_{2})$ plane and they are even in $y_{2}$ and $y_{3}$. Assuming that $V(r)$ has the following character \begin{equation*} V(r)=V_{1}+\frac{b}{r^q}+O\Big(\frac{1}{r^{q+σ}}\Big),~\mbox{ as } r\rightarrow\infty, \end{equation*} Where $\frac12\leq q<1$ and $b, V_{1}, σ$ are some positive constants, $V(y)\geq V_1>0$, we construct infinitely many non-radial positive solutions which have polygonal symmetry in the $(y_{1}, y_{2})$ plane and are even in $y_{2}$ for the Schrödinger-Newton system by the Lyapunov-Schmidt reduction method. We extend the results got by Duan et al. in (arXiv:2006.16125v1) to the nonlinear Schrödinger-Newton system.