论文标题
使用集成的衍射光子计算单元的全光图表示学习
All-optical graph representation learning using integrated diffractive photonic computing units
论文作者
论文摘要
光子神经网络使用光子代替可以实现可大大改善计算性能的电子进行脑启发的计算。但是,现有的体系结构只能处理带有常规结构的数据,例如图像或视频,但未能推广到欧几里得空间以外的图形结构化数据,例如社交网络或文档共同引用网络。在这里,我们根据集成的衍射光子计算单元(DPU)提出了一个全光学图表学习体系结构,称为衍射图神经网络(DGNN),以解决此限制。具体而言,DGNN光学地将节点属性编码为带状波导,这些属性由DPU转换并通过芯片光学耦合器聚集以提取其特征表示。每个DPU均包含连续的被动层,以通过衍射来调节电磁光场,其中金属结构是跨图节点共享的可学习参数。 DGNN捕获了节点社区之间的复杂依赖性,并在传递图形结构的光速光学消息中消除了非线性过渡函数。我们证明了使用基准数据库的节点和图形分类任务的DGNN提取的功能的使用并实现了出色的性能。我们的工作为设计特定应用的集成光子电路打开了一个新的方向,用于使用深度学习来高效处理大规模的图形数据结构。
Photonic neural networks perform brain-inspired computations using photons instead of electrons that can achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures, e.g., images or videos, but fail to generalize to graph-structured data beyond Euclidean space, e.g., social networks or document co-citation networks. Here, we propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN), based on the integrated diffractive photonic computing units (DPUs) to address this limitation. Specifically, DGNN optically encodes node attributes into strip optical waveguides, which are transformed by DPUs and aggregated by on-chip optical couplers to extract their feature representations. Each DPU comprises successive passive layers of metalines to modulate the electromagnetic optical field via diffraction, where the metaline structures are learnable parameters shared across graph nodes. DGNN captures complex dependencies among the node neighborhoods and eliminates the nonlinear transition functions during the light-speed optical message passing over graph structures. We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing of large-scale graph data structures using deep learning.