论文标题

评估多尺度多个实例学习以改善甲状腺癌分类

Evaluation of Multi-Scale Multiple Instance Learning to Improve Thyroid Cancer Classification

论文作者

Tschuchnig, Maximilian E., Grubmüller, Philipp, Stangassinger, Lea M., Kreutzer, Christina, Couillard-Després, Sébastien, Oostingh, Gertie J., Hittmair, Anton, Gadermayr, Michael

论文摘要

甲状腺癌目前是女性诊断出的第五大最常见的恶性肿瘤。由于癌症子类型的分化对于治疗很重要,因此手动方法是耗时且主观的,自动计算机辅助的癌症类型的分化至关重要。甲状腺癌的手动分化是基于组织切片的,该病理学家使用组织学特征分析。由于Gigapixel全幻灯片图像的巨大尺寸,使用深度学习方法的整体分类是不可行的。基于补丁的多个实例学习方法,结合了诸如单词袋之类的聚合,是一种常见的方法。这项工作的贡献是通过生成和组合三种不同贴片分辨率的特征向量并分析将它们结合的三种不同方法来扩展基于补丁的最新方法。结果表明,三种多尺度方法之一的改善,而其他方法则导致得分下降。这为分析和讨论各个方法提供了动力。

Thyroid cancer is currently the fifth most common malignancy diagnosed in women. Since differentiation of cancer sub-types is important for treatment and current, manual methods are time consuming and subjective, automatic computer-aided differentiation of cancer types is crucial. Manual differentiation of thyroid cancer is based on tissue sections, analysed by pathologists using histological features. Due to the enormous size of gigapixel whole slide images, holistic classification using deep learning methods is not feasible. Patch based multiple instance learning approaches, combined with aggregations such as bag-of-words, is a common approach. This work's contribution is to extend a patch based state-of-the-art method by generating and combining feature vectors of three different patch resolutions and analysing three distinct ways of combining them. The results showed improvements in one of the three multi-scale approaches, while the others led to decreased scores. This provides motivation for analysis and discussion of the individual approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源