论文标题
稳健性综合综合:在运行时适应环境
Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime
论文作者
论文摘要
虽然当前大多数合成算法仅专注于逐构建,但确保鲁棒性仍然是一个挑战。因此,在本文中,我们通过考虑要通过可靠的线性时间逻辑(LTL)表示的规格来解决稳健的综合问题,称为robust ltl(rltl)。 RLTL具有多个值的语义,可以捕获规范的不同程度,即满意度是一个定量概念。 我们认为,RLTL合成的当前算法不会在非抗逆势环境中计算最佳策略。因此,一个自然的问题是,如果环境确实不是对抗,是否有一种满足规范“更好”的方法。我们通过制定两个新的策略概念来解决这个问题。第一个概念是自适应策略,该策略响应对手的非抗辩动作,最大程度地提高了满意度。这个想法是使用多个奇偶校验自动机监视对手的非最佳动作,并自适应地更改系统策略以确保最佳性。第二个概念是强烈适应性策略,这是对第一个概念的进一步改进。这些策略还最大程度地提高了对手做出非最佳行动的机会。我们表明,计算RLTL规范的策略并不比标准合成问题(例如,使用LTL规范计算策略)更难,并且需要达到双重指数时间。
While most of the current synthesis algorithms only focus on correctness-by-construction, ensuring robustness has remained a challenge. Hence, in this paper, we address the robust-by-construction synthesis problem by considering the specifications to be expressed by a robust version of Linear Temporal Logic (LTL), called robust LTL (rLTL). rLTL has a many-valued semantics to capture different degrees of satisfaction of a specification, i.e., satisfaction is a quantitative notion. We argue that the current algorithms for rLTL synthesis do not compute optimal strategies in a non-antagonistic setting. So, a natural question is whether there is a way of satisfying the specification "better" if the environment is indeed not antagonistic. We address this question by developing two new notions of strategies. The first notion is that of adaptive strategies, which, in response to the opponent's non-antagonistic moves, maximize the degree of satisfaction. The idea is to monitor non-optimal moves of the opponent at runtime using multiple parity automata and adaptively change the system strategy to ensure optimality. The second notion is that of strongly adaptive strategies, which is a further refinement of the first notion. These strategies also maximize the opportunities for the opponent to make non-optimal moves. We show that computing such strategies for rLTL specifications is not harder than the standard synthesis problem, e.g., computing strategies with LTL specifications, and takes doubly-exponential time.