论文标题

使用自动编码器(GESTA)中的束拖拉机中的生成抽样

Generative Sampling in Bundle Tractography using Autoencoders (GESTA)

论文作者

Legarreta, Jon Haitz, Petit, Laurent, Jodoin, Pierre-Marc, Descoteaux, Maxime

论文摘要

当前的拖拉术方法使用局部定向信息来传播种子位置的流线。许多这样的种子都提供了过早停止或无法映射真白奇途径的流线,因为某些捆绑包比其他捆绑包更难轨道。这导致散拖船重建,白色和灰质空间覆盖不良。在这项工作中,我们提出了一种基于生成的,自动编码器的方法,名为GESTA(使用自动编码器中的捆绑式拖拉机中的生成采样),该方法产生了可以实现更好空间覆盖的流线。与其他深度学习方法相比,我们的基于自动编码器的框架使用单个模型以捆绑方式生成流线,并且不需要传播局部方向。 Gesta为任何给定的白色物质捆绑包(包括难以轨道捆绑包)生成了新的和完整的流线。 GESTA应用于给定的拖拉图的顶部,可有效地改善人口稠密的束中的白质体积覆盖率,无论是在体内数据中的合成和人脑上。我们的流线评估框架可确保GESTA产生的流线在解剖学上是合理的,并且非常适合局部扩散信号。流线评估标准评估解剖学(白质覆盖率),局部方向对齐(方向)以及流线的几何特征,以及可选的灰质连接性。因此,Gesta是一种新型的深层生成束拖拉方法,可用于改善白质的拖拉术重建。

Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true white matter pathways because some bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter spatial coverage. In this work, we propose a generative, autoencoder-based method, named GESTA (Generative Sampling in Bundle Tractography using Autoencoders), that produces streamlines achieving better spatial coverage. Compared to other deep learning methods, our autoencoder-based framework uses a single model to generate streamlines in a bundle-wise fashion, and does not require to propagate local orientations. GESTA produces new and complete streamlines for any given white matter bundle, including hard-to-track bundles. Applied on top of a given tractogram, GESTA is shown to be effective in improving the white matter volume coverage in poorly populated bundles, both on synthetic and human brain in vivo data. Our streamline evaluation framework ensures that the streamlines produced by GESTA are anatomically plausible and fit well to the local diffusion signal. The streamline evaluation criteria assess anatomy (white matter coverage), local orientation alignment (direction), and geometry features of streamlines, and optionally, gray matter connectivity. GESTA is thus a novel deep generative bundle tractography method that can be used to improve the tractography reconstruction of the white matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源