论文标题
3D中麦克斯韦特征值问题的拉格朗日有限元方法的收敛
Convergence of Lagrange Finite Element Methods for Maxwell Eigenvalue Problem in 3D
论文作者
论文摘要
我们使用二次或更高的lagrange有限元元素在三个维度上分裂上证明了麦克斯韦特征值问题的收敛性。为此,我们构建了两个类似堡垒的操作员,以证明相应的源问题的统一收敛性。我们提出数值实验来说明理论结果。
We prove convergence of the Maxwell eigenvalue problem using quadratic or higher Lagrange finite elements on Worsey-Farin splits in three dimensions. To do this, we construct two Fortin-like operators to prove uniform convergence of the corresponding source problem. We present numerical experiments to illustrate the theoretical results.