论文标题
使用潜在的Dirichlet分配来构建动态的住宅能源生活方式
Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation
论文作者
论文摘要
高级仪表基础设施(AMI)的快速扩展极大地改变了能源信息景观。但是,我们使用这些信息来产生有关住宅用电需求的可行见解的能力仍然有限。在这项研究中,我们提出并测试了一个新的框架,以使用动态的能量生活方式方法迭代且高度扩展,以了解住宅电力需求。为了获得能源生活方式,我们开发了一种新的方法,该方法采用潜在的迪里奇分配(LDA),这是一种用于推断文本数据潜在主题结构的方法,用于提取一系列潜在的家庭能量属性。通过这样做,我们提供了有关家庭用电消耗的新观点,在该观点中,每个家庭的特征是能量属性的混合物,这些属性构成了构成基础,以识别稀疏的能源生活方式集合。我们通过在60,000户家庭的一年的小时智能电表数据上进行实验来检查这种方法,并提取六个描述一般日常使用模式的能量属性。然后,我们使用聚类技术从能量属性比例中得出六个不同的能量生活方式曲线。我们的生活方式方法也可以灵活地改变时间间隔的长度,我们在季节性(秋季,冬季,春季和夏季)测试生活方式方法,以跟踪家庭内部和跨家庭的能量生活方式动态,并发现约73%的家庭在一年中表现出多种生活方式。然后将这些能源生活方式与不同的能源使用特征进行比较,我们讨论了它们在需求响应计划设计和生活方式变化分析中的实际应用。
The rapid expansion of Advanced Meter Infrastructure (AMI) has dramatically altered the energy information landscape. However, our ability to use this information to generate actionable insights about residential electricity demand remains limited. In this research, we propose and test a new framework for understanding residential electricity demand by using a dynamic energy lifestyles approach that is iterative and highly extensible. To obtain energy lifestyles, we develop a novel approach that applies Latent Dirichlet Allocation (LDA), a method commonly used for inferring the latent topical structure of text data, to extract a series of latent household energy attributes. By doing so, we provide a new perspective on household electricity consumption where each household is characterized by a mixture of energy attributes that form the building blocks for identifying a sparse collection of energy lifestyles. We examine this approach by running experiments on one year of hourly smart meter data from 60,000 households and we extract six energy attributes that describe general daily use patterns. We then use clustering techniques to derive six distinct energy lifestyle profiles from energy attribute proportions. Our lifestyle approach is also flexible to varying time interval lengths, and we test our lifestyle approach seasonally (Autumn, Winter, Spring, and Summer) to track energy lifestyle dynamics within and across households and find that around 73% of households manifest multiple lifestyles across a year. These energy lifestyles are then compared to different energy use characteristics, and we discuss their practical applications for demand response program design and lifestyle change analysis.