论文标题

参考矢量自适应和交配选择策略通过基于自适应理论的聚类,用于多个目标优化

Reference Vector Adaptation and Mating Selection Strategy via Adaptive Resonance Theory-based Clustering for Many-objective Optimization

论文作者

Kinoshita, Takato, Masuyama, Naoki, Liu, Yiping, Nojima, Yusuke, Ishibuchi, Hisao

论文摘要

基于分解的多主体进化算法(MOEAS)具有基于聚类的参考矢量适应性,显示出针对多目标优化问题(MAOPS)的优化性能。尤其是,使用拓扑结构(即由节点和边缘组成的网络)采用聚类算法的算法显示出与具有不规则帕洛塔最佳前沿(PFS)的MAOP的其他MOAP相比的优化性能。但是,这些算法在搜索过程中没有有效利用拓扑结构的信息。此外,常规研究中通常使用的聚类算法的聚类性能有限,从而抑制了为搜索过程提取有用信息的能力。本文提出了使用基于自适应共振理论的聚类和拓扑结构的自适应载体引导的进化算法。所提出的算法不仅利用拓扑结构的信息进行参考矢量适应,而且用于交配选择。在78个测试问题上,将提出的算法与8个最先进的MOEAS进行了比较。实验结果揭示了所提出的算法对具有各种特性的MAOP上的其他算法的出色优化性能。

Decomposition-based multiobjective evolutionary algorithms (MOEAs) with clustering-based reference vector adaptation show good optimization performance for many-objective optimization problems (MaOPs). Especially, algorithms that employ a clustering algorithm with a topological structure (i.e., a network composed of nodes and edges) show superior optimization performance to other MOEAs for MaOPs with irregular Pareto optimal fronts (PFs). These algorithms, however, do not effectively utilize information of the topological structure in the search process. Moreover, the clustering algorithms typically used in conventional studies have limited clustering performance, inhibiting the ability to extract useful information for the search process. This paper proposes an adaptive reference vector-guided evolutionary algorithm using an adaptive resonance theory-based clustering with a topological structure. The proposed algorithm utilizes the information of the topological structure not only for reference vector adaptation but also for mating selection. The proposed algorithm is compared with 8 state-of-the-art MOEAs on 78 test problems. Experimental results reveal the outstanding optimization performance of the proposed algorithm over the others on MaOPs with various properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源