论文标题

估计大量宇宙学N体仿真中星系簇的观察性特性的机器学习方法

Machine Learning methods to estimate observational properties of galaxy clusters in large volume cosmological N-body simulations

论文作者

de Andres, Daniel, Yepes, Gustavo, Sembolini, Federico, Martínez-Muñoz, Gonzalo, Cui, Weiguang, Robledo, Francisco, Chuang, Chia-Hsun, Rasia, Elena

论文摘要

在本文中,我们研究了一组受过监督的机器学习(ML)模型的适用性,该模型专门训练,可以从仅黑物质大小的晕孔的一组特征中推断出Baryonic成分(恒星和气体)的相关特性。该训练集由三百个项目构建,该项目由一系列从1 GPC体积的仅模拟的群集大小区域的缩放流体动力学模拟组成。我们用作目标变量,用于从流体动力学模拟中得出的聚类内气体和恒星的一组重重性能,并将它们与MDPL2 N体模拟的暗物质晕特性相关联。从该数据库训练了不同的ML模型,并随后用于推断MDPL2中确定的整个群集大小晕圈范围的相同的Baryonic属性。我们还测试了模型对暗物质光环的质量分辨率的预测的鲁棒性,并得出结论,其推断出的​​重型型性能对它们的DM性质不敏感,而DM的性质几乎用较小数量的粒子来解决。我们得出的结论是,本文中介绍的ML模型可以用作精确且具有计算有效的工具,用于在大容量N体积模拟中与观察性相关的Baryonic属性填充群集大小的光晕,从而使其与不同波长的完整天空星系集群调查更有价值。我们公开提供最好的ML培训模型。

In this paper we study the applicability of a set of supervised machine learning (ML) models specifically trained to infer observed related properties of the baryonic component (stars and gas) from a set of features of dark matter only cluster-size halos. The training set is built from THE THREE HUNDRED project which consists of a series of zoomed hydrodynamical simulations of cluster-size regions extracted from the 1 Gpc volume MultiDark dark-matter only simulation (MDPL2). We use as target variables a set of baryonic properties for the intra cluster gas and stars derived from the hydrodynamical simulations and correlate them with the properties of the dark matter halos from the MDPL2 N-body simulation. The different ML models are trained from this database and subsequently used to infer the same baryonic properties for the whole range of cluster-size halos identified in the MDPL2. We also test the robustness of the predictions of the models against mass resolution of the dark matter halos and conclude that their inferred baryonic properties are rather insensitive to their DM properties which are resolved with almost an order of magnitude smaller number of particles. We conclude that the ML models presented in this paper can be used as an accurate and computationally efficient tool for populating cluster-size halos with observational related baryonic properties in large volume N-body simulations making them more valuable for comparison with full sky galaxy cluster surveys at different wavelengths. We make the best ML trained model publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源