论文标题

依赖随机变量的大数量弱法律

A Weak Law of Large Numbers for Dependent Random Variables

论文作者

Karatzas, Ioannis, Schachermayer, Walter

论文摘要

每个序列$ f_1,f_2,\ cdots \,随机变量的$,带有$ \,\ lim_ {m \ to \ infty} \ big(m \ sup_ {k \ in \ mathbb {n}}}}} \ Mathbb {n} f_ {k_1},f_ {k_2},\ cdots \,$,$及其所有子序列,是大数字的薄弱法则:$ \,\ lim_ {n \ to \ infty} \ big((1/N)这里$ \,d_n \,$是一个“校正”随机变量,每个$ n \ in \ mathbb {n} $中的每个$ n \ in $ [ - n,n] $中的值;如果此外,这些校正器都等于零,此外,$ \,\ liminf_ {k \ to \ infty} \ mathbb {e} \ big(f_k^2 \,\ MathBf {1} _ {\ f_k | \ infty)\,。$

Every sequence $f_1, f_2, \cdots \, $ of random variables with $ \, \lim_{M \to \infty} \big( M \sup_{k \in \mathbb{N}} \mathbb{P} ( |f_k| > M ) \big)=0\,$ contains a subsequence $ f_{k_1}, f_{k_2} , \cdots \,$ that satisfies, along with all its subsequences, the weak law of large numbers: $ \, \lim_{N \to \infty} \big( (1/N) \sum_{n=1}^N f_{k_n} - D_N \big) =0\,,$ in probability. Here $\, D_N\, $ is a "corrector" random variable with values in $[-N,N]$, for each $N \in \mathbb{N} $; these correctors are all equal to zero if, in addition, $\, \liminf_{k \to \infty} \mathbb{E} \big( f_k^2 \, \mathbf{ 1}_{ \{ |f_k| \le M \} } \big) =0\,$ holds for every $M \in (0, \infty)\,.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源