论文标题
通过广义概率理论中的本地通道的准生物混合物模拟所有多部分非信号通道
Simulating all multipartite non-signalling channels via quasiprobabilistic mixtures of local channels in generalised probabilistic theories
论文作者
论文摘要
非信号量子通道(例如,在贝尔和爱因斯坦 - 波多尔斯基 - 罗森情景的研究中相关)可以通过在两部分场景中的局部操作组合来模拟。此外,当这些通道对应于经典变量之间的随机图时,即使在多部分场景中,这种模拟也是可能的。在研究这些渠道的性质时,例如它们的通信和信息处理能力,甚至定义了物理现象的非经典性(例如贝尔的非经典性和转向)时,这两个结果已被证明是有用的。在本文中,我们表明,通道的这种有用的准故事特性可以统一并应用于更广泛的多部分非信号通道。此外,我们表明,这适用于量子理论中的非信号渠道以及更大的广义概率理论家族。更确切地说,我们证明,如果基本的物理理论是局部断层扫描,则可以通过相应的局部操作的仿射组合来模拟非信号通道 - 量子理论满足的属性。然后,我们的结果可以看作是参考文献的概括。莱特牧师。 111,170403]和[Phys。 Rev. A 88,022318(2013)]到任意局部局部广义概率理论(包括量子理论)的多部分方案。我们的证明技术利用了Hardy的Duotensor形式主义,强调了其在这一研究中的效用。
Non-signalling quantum channels -- relevant in, e.g., the study of Bell and Einstein-Podolsky-Rosen scenarios -- may be simulated via affine combinations of local operations in bipartite scenarios. Moreover, when these channels correspond to stochastic maps between classical variables, such simulation is possible even in multipartite scenarios. These two results have proven useful when studying the properties of these channels, such as their communication and information processing power, and even when defining measures of the non-classicality of physical phenomena (such as Bell non-classicality and steering). In this paper we show that such useful quasi-stochastic characterizations of channels may be unified and applied to the broader class of multipartite non-signalling channels. Moreover, we show that this holds for non-signalling channels in quantum theory, as well as in a larger family of generalised probabilistic theories. More precisely, we prove that non-signalling channels can always be simulated by affine combinations of corresponding local operations, provided that the underlying physical theory is locally tomographic -- a property that quantum theory satisfies. Our results then can be viewed as a generalisation of Refs.~[Phys. Rev. Lett. 111, 170403] and [Phys. Rev. A 88, 022318 (2013)] to the multipartite scenario for arbitrary tomographically local generalised probabilistic theories (including quantum theory). Our proof technique leverages Hardy's duotensor formalism, highlighting its utility in this line of research.